07. Boucle pour

Une boucle *pour* permet de répéter une instruction un nombre de fois déterminé, elle dispose d'un *compteur* d'itérations.

Exemple 1. Calcul de 2^n .

```
Entrée: variable entière n
Sortie: variable entière p dont la valeur est égale à 2^n
Début
\begin{array}{c|c} p \leftarrow 1 \\ \text{Pour } k \text{ allant de } 1 \text{ à } n \text{ faire} \\ p \leftarrow 2p \\ \text{FinPour} \end{array}
```

	valeur de p
Début	1
k = 1	2^{1}
k = 2	2^{2}
:	
k = n	2^n
Fin	2^n

Le compteur d'itérations peut être utilisé dans l'instruction itérée.

Exemple 2. Calcul de $1 + 2 + \cdots + n$.

```
Entrée: variable entière non nulle n
Sortie: variable entière s dont la valeur est égale à 1+2+\cdots+n
Début
\begin{array}{c|c} s \leftarrow 0 \\ \textbf{Pour } k \textbf{ allant de } 1 \textbf{ à } n \textbf{ faire} \\ \mid s \leftarrow s+k \\ \textbf{FinPour} \end{array}
```

	valeur de s
Début	0
k = 1	1
k = 2	1 + 2
:	
k = n	$1+2+\cdots+n$
Fin	$1+2+\cdots+n$

- Exercice 1. Écrire un algorithme permettant d'afficher les entiers de 1 à n dans l'ordre décroissant.
- **Exercice 2.** Écrire un algorithme permettant de calculer n! pour $n \in \mathbb{N}^*$.
- **Exercice 3.** Écrire un algorithme permettant d'afficher les n premiers entiers impairs.

Exercice 4. Écrire un algorithme permettant de calculer le n-ième terme de la suite définie par $\begin{cases} u_1 &= 1 \\ u_{n+1} &= u_n + \frac{1}{u_n}, \ n \in \mathbb{N}^* \end{cases}$

Exercice 5. Écrire un algorithme permettant de calculer la somme des n premiers entiers impairs.

Exercice 6. Écrire un algorithme permettant de calculer le n-ième terme de la suite de Fibonacci définie par $\begin{cases} u_1 &= 1 \\ u_2 &= 1 \end{cases}$.

Exercice 7. Écrire un algorithme permettant de déterminer si un entier $n \ge 2$ est un nombre premier.