25. Algèbre ensembliste

On rappelle les définitions de l'union, de l'intersection et de la différence de deux ensembles :

$$A \cup B = \{x/x \in A \text{ ou } x \in B\}$$

$$A \cap B = \{x/x \in A \text{ et } x \in B\}$$

$$A - B = \{x \in A/x \notin B\}$$

ainsi que celle du produit cartésien de deux ensembles :

$$A \times B = \{(x; y)/x \in A \text{ et } y \in B\}$$

Exercice 1. On considère deux tables de relations R_1 et R_2 d'attributs (A_1, A_2, A_3) :

R_1	A_1	A_2	A_3	_	R_{\circ}	Δ.	A_2	4.
	2	b a u q	h	="	102			
	1	a	а			3	a u b s	b
	1	a	a			4	u	\mathbf{V}
	4	u	V			2	b	h
	7	\mathbf{q}	r			2	2	1
	1	c	d			2	\mathbf{s}	1

Déterminer $R_1 \cup R_2$, $R_1 \cap R_2$ et $R_2 - R_1$.

Exercice 2. On considère deux tables de relations R_1 et R_2 d'attributs respectifs (A_1, A_2, A_3) et (B_1, B_2) :

Déterminer $R_1 \times R_2$.

Exercice 3. On considère deux tables de relations chacune munies d'un identifiant, comment peut-on définir un identifiant pour $R_1 \times R_2$?

Exercice 4. On considère deux tables de relations R_1 et R_3 d'attributs respectifs (A_1, A_2) et (A_1, A_2, A_3, A_4) :

				R_3	A_1	A_2	A_3	A_4
					2	b	a	3
R_1	A_1	A_2			1	a	${f z}$	1
	2	b	-		1	b	${f z}$	1
	1	\mathbf{a}			2	b	\mathbf{t}	2
	-				1	a	\mathbf{t}	2
					2	b a b b a b b b	${f z}$	1

Déterminer la plus grande table de relation R_2 telle que $R_1 \times R_2 \subset R_3$.

Exercice 5. Montrer que l'union est distributive par rapport à l'intersection et que l'intersection est distributive par rapport à l'union.