Réponses de l'épreuve de Mathématiques 2 du Concours blanc

Problème

Partie A (Résolution d'une équation différentielle)

1. (a) $y_H(x) = \lambda x$.

(b)
$$y_P(x) = -1 - \ln x$$
.

(c)
$$y_G(x) = y_H(x) + y_P(x) = \lambda x - 1 - \ln x$$
.

(d)
$$f(x) = x - 1 - \ln x$$
.

2. (a) $\alpha = 1$.

(b) On a
$$xK'' + K' = 0$$
 d'où $K(x) = \lambda \ln x + \mu$.

(c) $y_H(x) = \lambda x \ln x + \mu x$.

(d) On remarque que
$$y'_0(x) = -\frac{1}{x}$$
 et $y''_0(x) = \frac{1}{x^2}$.

(e)
$$y_G(x) = y_0(x) + y_H(x) = -1 - \ln x + \lambda x \ln x + \mu x$$
.

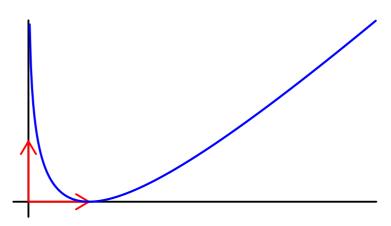
(f) On montre que $\mu = 1$ et $\lambda = 0$.

Partie B (Étude de la fonction f)

1.

x	0			1		
f(x)		$+\infty$	¥	0	7	$+\infty$

2.



3. On remarque que $f(x) \ge 0$ pour tout $x \in \mathbb{R}_+^*$.

4.
$$F(x) = \frac{x^2}{2} - x \ln x$$
.

5.
$$\lim_{\substack{\epsilon \to 0 \\ \epsilon > 0}} \int_{\epsilon}^{1} f(x) dx = F(1) - \lim_{\substack{\epsilon \to 0 \\ \epsilon > 0}} F(\epsilon) = \frac{1}{2}.$$

6.
$$\lim_{M \to +\infty} \int_{1}^{M} f(x) dx = \lim_{M \to +\infty} F(M) = +\infty.$$

Partie C (Comparaison des moyennes)

- 1. En sommant les inégalités, on obtient $\ln\left(\frac{a_1a_2\dots a_n}{m_a^n}\right) \leqslant \frac{a_1+a_2+\dots+a_n}{m_a}-n$ soit $n\ln\frac{m_g}{m_a}\leqslant 0$.
- 2. On a $m_g = m_a$ si $\frac{a_i}{m_a} = 1$ pour tout i soit $a_1 = a_2 = \cdots = a_n$.
- 3. C'est évident pour xyz=0 sinon on utilise la question précédente avec $a_1=x^4y^2z^2,\,a_2=x^2y^4z^2,\,a_3=x^2y^2z^4$ et $a_4=1$.
- 4. On montre que $\frac{1}{\sqrt[n]{a_1 a_2 \dots a_n}} \leqslant \frac{1}{n} \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} \right)$.
- 5. On a $m_h = m_g$ si $\frac{1}{a_1} = \frac{1}{a_2} = \dots = \frac{1}{a_n}$ soit $a_1 = a_2 = \dots = a_n$.
- 6. On remarque que $m_h \leqslant m_g \leqslant m_a$ d'où $\frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}} \leqslant \frac{x_1 + x_2 + \dots + x_n}{n}$.

Partie D (Détermination d'un équivalent de $\sqrt[n]{n!}$)

- 1. On pose $a_i = i$.
- 2. On remarque que $\int_{k-1}^k \frac{\mathrm{d}x}{x} \geqslant \int_{k-1}^k \frac{\mathrm{d}x}{k} = \frac{1}{k}$.
- 3. En sommant les inégalités de la question précédente, on obtient $\int_1^n \frac{\mathrm{d}x}{x} \geqslant \sum_{k=2}^{k=n} \frac{1}{k}$.
- 4. On en déduit que $\frac{1+\ln n}{n} \geqslant \frac{\sum_{k=1}^{n-1} \frac{1}{k}}{n} \geqslant \frac{1}{\sqrt[n]{n!}} \operatorname{car} m_a \geqslant m_g$.
- 5. $\lim_{n \to +\infty} \sqrt[n]{n!} = +\infty$.
- 6. On montre que $\ln(\sqrt[n+1]{(n+1)!}) \ln(\sqrt[n]{n!}) = \frac{1}{n(n+1)} \sum_{k=1}^{k=n} [\ln(n+1) \ln k] \ge 0.$
- 7. On a $0 < \frac{1}{1 + \ln n} \le \frac{\sqrt[n]{n!}}{n} \le \frac{n+1}{2n} \le 1$.
- 8. On somme les inégalités $\int_{k-1}^k \ln x \, dx \le \ln k \le \int_k^{k+1} \ln x \, dx$ pour $k \ge 2$, l'inégalité obtenue est vraie également pour n=1.
- 9. On en déduit que $n \ln n n + 1 \leqslant \ln(n!) \leqslant (n+1) \ln(n+1) n$ d'où $e^{\frac{1}{n}} \leqslant \frac{e^{\sqrt[n]{n!}}}{n} \leqslant e^{\ln\left(1+\frac{1}{n}\right)+\frac{1}{n}\ln(n+1)}$ et enfin $\sqrt[n]{n!} \sim \frac{n}{e}$.