I. Pratique calculatoire

Exercice 1

Résoudre dans \mathbb{R} l'inéquation $\frac{x^2 + x}{x^2 - 2} \leqslant 0$.

Exercice 2

Résoudre graphiquement le système $\left\{ \begin{array}{ll} 2x-y+1 &> 0 \\ x-2 &< 0 \\ x+2y+2 &> 0 \end{array} \right.$

Exercice 3

Résoudre dans \mathbb{R} graphiquement puis par le calcul l'équation |x-1|+|x+2|=3.

Exercice 4

Résoudre dans $\mathbb R$ l'inéquation $|x+1|+|x-1|\leqslant x+2$.

Exercice 5

Résoudre dans \mathbb{R} l'équation $5x^2 + \frac{2}{3}x - 1 = 0$.

Exercice 6

Résoudre dans $\mathbb R$ l'inéquation $x^2 < x + 2$.

Exercice 7

Déterminer l'ensemble de définition de la fonction $f: x \mapsto \ln(x^2 - x)$ puis étudier ses variations.

Exercice 8

Déterminer la valeur de $m \in \mathbb{R}$ pour que l'équation $-3x^2 + 6x - 4m = 0$ admette une unique solution et la calculer dans ce cas.

Exercice 9

Résoudre dans $\mathbb R$ l'inéquation $\frac{x^2-2x-3}{x^2+x-2}\geqslant 0.$

Exercice 10

Résoudre dans \mathbb{R} l'inéquation $\frac{x-1}{2x} > \frac{x+5}{2-x}$.

Exercice 11

Résoudre le système
$$\begin{cases} \frac{1}{x} + \frac{1}{y} = \frac{4}{15} \\ xy = 60 \end{cases}$$

Exercice 12

Résoudre dans \mathbb{R} l'équation $9x^3 + 12x^2 + x - 2 = 0$.

Exercice 13

Résoudre dans \mathbb{R} l'inéquation $\frac{x^2 + 3x - 4}{x - 1} \leqslant \frac{77}{x}$.

Exercice 14

Déterminer
$$\lim_{\substack{x\to 0\\x<0}} \frac{\sqrt{x+1}}{\sin x}$$
, $\lim_{x\to 1} e^{-(\ln x)^2}$, $\lim_{x\to -\infty} \ln(\sqrt{x^2+1}-x)$ et $\lim_{x\to 0} x \sin\left(\frac{1}{x}\right)$.

Exercice 15

Déterminer
$$\lim_{x \to -\infty} \frac{2x^2 - 1}{3x + 1}$$
, $\lim_{x \to +\infty} \frac{1}{x - \sqrt{x}}$, $\lim_{x \to 1} \frac{x^2 - 3x + 2}{x^2 - 1}$ et $\lim_{x \to +\infty} (\sqrt{x^2 + 1} - \sqrt{x^2 + 2})$.

Exercice 16

Déterminer
$$\lim_{x\to 0} xe^{-\frac{1}{x^2}}$$
 et $\lim_{x\to +\infty} \frac{\ln(x^2+1)}{x}$.

Exercice 17

Déterminer
$$\lim_{x\to 0} \frac{e^x - 1}{x}$$
 et $\lim_{x\to 0} \frac{\ln(1+x)}{x}$.

Exercice 18

Déterminer les dérivées des fonctions $f_1: x \mapsto \frac{x+2}{x^2+1}$, $f_2: x \mapsto xe^{x^2-1}$ et $f_3: x \mapsto x(x+1)^2$.

Exercice 19

Déterminer les dérivées des fonctions $f_1: x \mapsto x\sqrt{x^2+2}$, $f_2: x \mapsto \frac{\sin x}{\ln x}$ et $f_3: x \mapsto (\sin x - \cos x)e^x$.

Exercice 20

Déterminer les primitives des fonctions $f_1: x \mapsto 2x^2 - x + 7$, $f_2: x \mapsto x^2(x^3 + 1)^3$ et $f_3: x \mapsto \frac{x}{(x^2 + 3)^2}$.

Exercice 21

Déterminer les primitives des fonctions $f_1: x \mapsto x\sqrt{x}, f_2: x \mapsto \sin x \cos x$ et $f_3: x \mapsto \frac{x}{x^2+1}$.

Exercice 22

Calculer
$$\sum_{k=0}^{k=n} (2k+1)$$
 et $\prod_{k=0}^{k=n} 2^k$.

Exercice 23

Calculer
$$\prod_{k=1}^{k=n} \frac{k}{k+1}$$
.

Exercice 24

Calculer
$$\frac{15!}{7! \ 9!}$$
.

Exercice 25

Simplifier
$$\frac{(2n+1)!}{(2n-1)!} - 2\frac{(n+1)!}{(n-1)!}$$
 pour $n \in \mathbb{N}^*$.

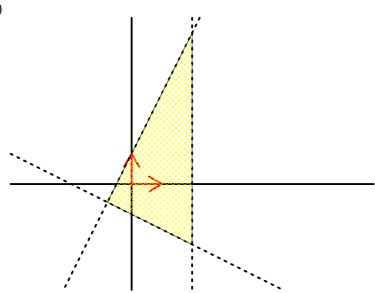
Exercice 26

En utilisant la formule du binôme, montrer que pour tous $n \in \mathbb{N}^*$ et $x \in [0; +\infty[, (1+x)^n \ge 1 + nx]]$

Réponses

1) L'ensemble des solutions est $]-\sqrt{2};-1]\cup[0;\sqrt{2}[.$

2)



- 3) L'ensemble des solutions est l'intervalle [-2; 1].
- 4) L'ensemble des solutions est l'intervalle [0; 2].
- 5) Les solutions sont $\frac{-1-\sqrt{46}}{15}$ et $\frac{-1+\sqrt{46}}{15}$.
- 6) L'ensemble des solutions est l'intervalle]-1;2[.

7)

x	$-\infty$		()	1	-		$+\infty$
	$+\infty$				П			$+\infty$
f		×		П	ш		7	
			$-\infty$	ш		$-\infty$		

- 8) Pour $m = \frac{3}{4}$, l'équation admet pour unique solution x = 1.
- 9) L'ensemble des solutions est $]-\infty;-2[\cup[-1;1[\cup[3;+\infty[$.
- **10)** L'ensemble des solutions est $]-\infty;-2[\cup]-\frac{1}{3};0[\cup]2;+\infty[.$
- 11) Les solutions du système sont les couples $(x_1 = 6; y_1 = 10)$ et $(x_2 = 10; y_2 = 6)$.
- 12) Les solutions sont -1, $\frac{1}{3}$ et $-\frac{2}{3}$.
- 13) L'ensemble des solutions est $]-\infty;-11]\cup]0;1[\cup]1;7].$

14)
$$\lim_{\substack{x \to 0 \\ x \neq 0}} \frac{\sqrt{x+1}}{\sin x} = -\infty$$
, $\lim_{x \to 1} e^{-(\ln x)^2} = 1$, $\lim_{x \to -\infty} \ln(\sqrt{x^2+1} - x) = +\infty$ et $\lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0$.

15)
$$\lim_{x \to -\infty} \frac{2x^2 - 1}{3x + 1} = -\infty$$
, $\lim_{x \to +\infty} \frac{1}{x - \sqrt{x}} = 0$, $\lim_{x \to 1} \frac{x^2 - 3x + 2}{x^2 - 1} = -\frac{1}{2}$ et $\lim_{x \to +\infty} (\sqrt{x^2 + 1} - \sqrt{x^2 + 2}) = 0$.

16)
$$\lim_{x \to 0} x e^{-\frac{1}{x^2}} = 0$$
 et $\lim_{x \to +\infty} \frac{\ln(x^2 + 1)}{x} = \lim_{x \to +\infty} \left(2 \frac{\ln x}{x} + \frac{\ln\left(1 + \frac{1}{x^2}\right)}{x} \right) = 0.$

17)
$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$
 et $\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$.

18)
$$f_1'(x) = \frac{-x^2 - 4x + 1}{(x^2 + 1)^2}$$
, $f_2'(x) = (2x^2 + 1)e^{x^2 - 1}$ et $f_3'(x) = (3x + 1)(x + 1)$.

19)
$$f_1'(x) = \frac{2(x^2+1)}{\sqrt{x^2+2}}, f_2'(x) = \frac{x\cos x \ln x - \sin x}{x(\ln x)^2} \text{ et } f_3'(x) = 2e^x \sin x.$$

20)
$$F_1(x) = \frac{2}{3}x^3 - \frac{1}{2}x^2 + 7x + k$$
, $F_2(x) = \frac{1}{12}(x^3 + 1)^4 + k$ et $F_3(x) = -\frac{1}{2(x^2 + 1)} + k$.

21)
$$F_1(x) = \frac{2}{5}x^2\sqrt{x} + k$$
, $F_2(x) = \frac{1}{2}(\sin x)^2 + k$ et $F_3(x) = \frac{1}{2}\ln(x^2 + 1) + k$.

22)
$$\sum_{k=0}^{k=n} (2k+1) = (n+1)^2$$
 et $\prod_{k=0}^{k=n} 2^k = 2^{\frac{n(n+1)}{2}}$.

23)
$$\prod_{k=1}^{k=n} \frac{k}{k+1} = \frac{1}{n+1}.$$

24)
$$\frac{15!}{7! \ 9!} = 715.$$

25)
$$\frac{(2n+1)!}{(2n-1)!} - 2\frac{(n+1)!}{(n-1)!} = 2n^2 \text{ pour } n \in \mathbb{N}^*.$$

26) On minore $(1+x)^n$ par les deux premiers termes de son développement suivant la formule du binôme, les autres termes étant positifs.