II. Nombres complexes

Exercice 1

Dans le plan complexe, déterminer l'ensemble des points d'affixe z vérifiant $(2+i)z + (2-i)\overline{z} = 2$.

Exercice 2

Dans le plan complexe, déterminer graphiquement l'ensemble des points d'affixe z vérifiant |1+i+z|=2.

Exercice 3

Simplifier $|z+1|^2+|z-1|^2$ pour z un nombre complexe de module 1.

Exercice 4

Simplifier $\cos(5\pi + x)$, $\cos(\frac{3\pi}{2} + x)$, $\cos(3\pi + x)$ et $\cos(\frac{5\pi}{2} + x)$ en utilisant les symétries du cercle trignonométrique.

Exercice 5

Déterminer les mesures principales 1 associées aux mesures $\frac{15\pi}{2}$, $\frac{34\pi}{7}$ et $-\frac{65\pi}{3}$.

Exercice 6

Déterminer les valeurs exactes des cosinus et sinus des réels $-\frac{5\pi}{3}$, $\frac{7\pi}{4}$ et $\frac{19\pi}{6}$.

Exercice 7

Résoudre l'équation $\cos x = -\frac{\sqrt{3}}{2}$; $x \in \left[\frac{\pi}{2}; \frac{3\pi}{2}\right]$ et l'inéquation $-\frac{1}{2} < \sin x < \frac{\sqrt{3}}{2}$; $x \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$.

Exercice 8

Factoriser $\cos(3x) + \cos(5x)$ pour $x \in \mathbb{R}$.

Exercice 9

Simplifier
$$\frac{\sin(3x)}{\sin x} - \frac{\cos(3x)}{\cos x}$$
 pour $x \neq k\frac{\pi}{2}$, $k \in \mathbb{Z}$.

1. mesures dans l'intervalle $]-\pi;\pi]$

Exercice 10

- 1. Linéariser $(\cos x)^3$ puis $(\sin x)^3$ en utilisant les relations d'Euler.
- 2. Linéariser $\sin\left(\frac{\pi}{3}+x\right)\sin\left(\frac{\pi}{3}-x\right)$ en utilisant les relations d'Euler.

Exercice 11

- 1. Résoudre dans \mathbb{R} l'équation $\cos x + \cos(2x) = 0$.
- 2. Résoudre dans \mathbb{R} l'équation $\cos x + \sqrt{3} \sin x = -2$.
- 3. Résoudre dans \mathbb{R} l'inéquation $\cos x + \cos \left(x + \frac{\pi}{3} \right) > 0$.

Exercice 12

Montrer que $\cos x - 1 = -2\left(\sin\frac{x}{2}\right)^2$, en déduire $\lim_{x\to 0} \frac{\cos x - 1}{x^2}$.

Exercice 13

Factoriser $\cos\left(x-\frac{1}{2}\right)-\cos\left(x+\frac{1}{2}\right)$, en déduire $\sum_{k=1}^{k=n}\sin k$.

Exercice 14

Déterminer la forme trigonométrique de $1 - i\sqrt{3}$, en déduire la forme algébrique de $(1 - i\sqrt{3})^5$.

Exercice 15

Résoudre dans \mathbb{C} l'équation $z^3 = \overline{z}$.

Exercice 16

Calculer dans \mathbb{C} les racines cubiques de -8.

Exercice 17

Résoudre dans \mathbb{C} l'équation $e^z = i - 1$.

Exercice 18

Déterminer sous forme algébrique les racines carrées de $\frac{21}{4} - 5i$.

Exercice 19

Résoudre dans \mathbb{C} l'équation $z^2 - (1+i)z + 5i = 0$.

Exercice 20

Résoudre dans \mathbb{C} l'équation $z^4 + 8iz^2 - 25 = 0$.

Réponses

- 1) Droite d'équation réduite y = 2x 1.
- 2) Cercle de centre d'affixe -1 i et de rayon 2.
- 3) $|z+1|^2 + |z-1|^2 = 4 \text{ si } z\overline{z} = 1.$
- 4) $\cos(5\pi + x) = -\cos x$, $\cos(\frac{3\pi}{2} + x) = \sin x$, $\cos(3\pi + x) = -\cos x$ et $\cos(\frac{5\pi}{2} + x) = -\sin x$.
- 5) $\frac{15\pi}{2} = -\frac{\pi}{2}[2\pi], \frac{34\pi}{7} = \frac{6\pi}{7}[2\pi] \text{ et } -\frac{65\pi}{3} = \frac{\pi}{3}[2\pi].$
- 6) $\cos\left(-\frac{5\pi}{3}\right) = \frac{1}{2}$, $\sin\left(-\frac{5\pi}{3}\right) = \frac{\sqrt{3}}{2}$, $\cos\left(\frac{7\pi}{4}\right) = \frac{\sqrt{2}}{2}$, $\sin\left(\frac{7\pi}{4}\right) = -\frac{\sqrt{2}}{2}$, $\cos\left(\frac{19\pi}{6}\right) = -\frac{\sqrt{3}}{2}$ et $\sin\left(\frac{19\pi}{6}\right) = -\frac{1}{2}$.
- 7) Les ensembles de solutions sont $\{\frac{5\pi}{6}; \frac{7\pi}{6}\}$ et $]-\frac{\pi}{6}; \frac{\pi}{3}[$.
- 8) $\cos(3x) + \cos(5x) = \cos(4x x) + \cos(4x + x) = 2\cos(x)\cos(4x)$.
- $9) \frac{\sin(3x)}{\sin x} \frac{\cos(3x)}{\cos x} = 2$
- **10)** $(\cos x)^3 = \frac{3\cos x + \cos(3x)}{4}$ et $(\sin x)^3 = \frac{3\sin x \sin(3x)}{4}$; $\sin\left(\frac{\pi}{3} + x\right)\sin\left(\frac{\pi}{3} x\right) = \frac{1 + 2\cos(2x)}{4}$.
- 11) $\cos x + \cos 2x = 2(\cos x)^2 + \cos x 1$ d'où $x = \pi[2\pi]$ ou $x = \pm \frac{\pi}{3}[2\pi]$; $\cos x + \sqrt{3}\sin x = 2\cos\left(x \frac{\pi}{3}\right)$ d'où $x = -\frac{2\pi}{3}[2\pi]$; $\cos x + \cos\left(x + \frac{\pi}{3}\right) = \sqrt{3}\cos\left(x + \frac{\pi}{6}\right)$ d'où $-\frac{2\pi}{3} + 2k\pi < x < \frac{\pi}{3} + 2k\pi$, $k \in \mathbb{Z}$.
- 12) $\lim_{x\to 0} \frac{\cos x 1}{x^2} = -\frac{1}{2}$.
- 13) $\sum_{k=1}^{k=n} \sin k = \frac{\cos \frac{1}{2} \cos \left(n + \frac{1}{2}\right)}{2 \sin \frac{1}{2}}.$
- **14)** $1 i\sqrt{3} = 2e^{-i\frac{2\pi}{3}}$ d'où $(1 i\sqrt{3})^5 = 16(1 + i\sqrt{3})$.
- **15)** 0, i, -1, -i et 1 en utilisant l'écriture trigonométrique.
- **16**) -2, $1+i\sqrt{3}$ et $1-i\sqrt{3}$.
- 17) $z = \frac{1}{2} \ln 2 + i \left(\frac{3\pi}{4} + 2k\pi \right), k \in \mathbb{Z}.$
- **18)** $\frac{5}{2} i$ et $-\frac{5}{2} + i$.
- **19)** 2 i et -1 + 2i.
- **20)** -1+2i, 1-2i, -2+i et 2-i.