IV. Géométrie du plan

Exercice 1

Le plan étant muni d'une base orthonormale directe $(\overrightarrow{i}, \overrightarrow{j})$, on considère la base $(\overrightarrow{u}, \overrightarrow{v})$ obtenue par rotation d'angle $-\frac{\pi}{6}$ de cette dernière.

Déterminer les coordonnées des vecteurs \overrightarrow{i} et \overrightarrow{j} dans la base $(\overrightarrow{u}, \overrightarrow{v})$.

Exercice 2

Dans le plan complexe, on considère un vecteur \overrightarrow{u} d'affixe 3-2i. Déterminer l'affixe de l'image de ce vecteur par la rotation d'angle $-\frac{2\pi}{3}$.

Exercice 3

Dans le plan muni d'un repère orthonormal direct, on considère un vecteur $\overrightarrow{u}\begin{pmatrix} x \\ y \end{pmatrix}$. Déterminer l'image de ce vecteur par la rotation d'angle $\frac{\pi}{2}$.

Exercice 4

Dans le plan muni d'un repère orthonormal direct, déterminer les coordonnées polaires du point M de coordonnées $(\sqrt{3}-2;3-2\sqrt{3})$.

Exercice 5

On considère deux vecteurs \overrightarrow{u} et \overrightarrow{v} du plan. Exprimer $||2\overrightarrow{u}+3\overrightarrow{v}||^2-||3\overrightarrow{u}+2\overrightarrow{v}||^2$ en fonction de $||\overrightarrow{u}||$ et $||\overrightarrow{v}||$.

Exercice 6

Dans le plan, on considère un segment [AB] de milieu I. Montrer que pour tout point M on a $MA^2 + MB^2 = 2MI^2 + \frac{1}{2}AB^2$. En déduire le lieu géométrique formé par les points M vérifiant $MA^2 + MB^2 = AB^2$.

Exercice 7

Démontrer que $\overrightarrow{u}.\overrightarrow{v}=[\overrightarrow{u},r_{\frac{\pi}{2}}(\overrightarrow{v})]$ et $[\overrightarrow{u},\overrightarrow{v}]=r_{\frac{\pi}{2}}(\overrightarrow{u}).\overrightarrow{v}$.

Exercice 8

Dans le plan complexe, calculer l'aire du triangle dont les sommets ont pour affixes i-2, 1-i et 5+2i.

Exercice 9

Dans le plan muni d'une base orthonormale directe, on considère les vecteurs $\overrightarrow{u}\begin{pmatrix} 1\\2 \end{pmatrix}$ et $\overrightarrow{v}\begin{pmatrix} 1+2\sqrt{3}\\2-\sqrt{3} \end{pmatrix}$. Déterminer la mesure de l'angle orienté $(\overrightarrow{u},\overrightarrow{v})$.

Exercice 10

On considère un triangle ABC tel que BC=4, $\widehat{ABC}=\frac{\pi}{4}$ et $\widehat{ACB}=\frac{\pi}{3}$. Calculer les longueurs AB et AC.

Exercice 11

Dans le plan muni d'un repère orthonormal, déterminer une équation cartésienne de la droite passant par le point A(2;-1) et perpendiculaire à la droite d'équation 3x - 2y + 5 = 0.

Exercice 12

Dans le plan muni d'un repère orthonormal, déterminer un paramétrage de la droite passant par le point A(-1;3) et admettant $\overrightarrow{n} \left(\begin{array}{c} 2 \\ 1 \end{array} \right)$ pour vecteur normal.

Exercice 13

Dans le plan muni d'un repère orthonormal, on considère les points A(3;4), B(1;2) et C(5;1). Déterminer les coordonnées de l'orthocentre du triangle ABC ainsi que les coordonnées du centre du cercle circonscrit au triangle ABC.

Exercice 14

Dans le plan muni d'un repère orthonormal, déterminer la distance du point A(2;1) à la droite \mathcal{D} d'équation paramétrique $\begin{cases} x = 3 + 3t \\ y = -1 + 2t \end{cases} .$

Exercice 15

Dans le plan muni d'un repère orthonormal, on considère les points A(3;1) et B(-2;2). Déterminer une équation cartésienne du cercle de centre A passant par le point B.

Exercice 16

Dans le plan muni d'un repère orthonormal, on considère les points A(3;2), B(-1;-2) et $\Omega(2;-1)$. Déterminer l'intersection de la droite (AB) avec le cercle de centre Ω et de rayon 2.

Exercice 17

Dans le plan muni d'un repère orthonormal, on considère les points A(3;1), B(6;5) et C(2;-2). Déterminer une équation cartésienne des tangentes au cercle de diamètre [AB] passant par le point C.

Exercice 18

Dans le plan muni d'un repère orthonormal, montrer que la transformation $M(x;y) \mapsto M'(x-2;y+4)$ est une translation de vecteur \overrightarrow{u} dont on déterminera les coordonnées.

Exercice 19

Dans le plan muni d'un repère orthonormal, montrer que la transformation $M(x;y) \mapsto M'(-x-2;4-y)$ est une symétrie centrale et déterminer son centre.

Exercice 20

Dans le plan muni d'un repère orthonormal, on considère les points I(-1;2) et M(x;y). Déterminer en fonction de x et de y les coordonnées de l'image M' du point M par la rotation de centre I et d'angle $\frac{\pi}{2}$.

Exercice 21

Dans le plan muni d'un repère orthonormal, on considère les points A(-1; -3), B(2; 1) et M(x; y). Déterminer en fonction de x et de y les coordonnées du projeté orthogonal H du point M sur la droite (AB), en déduire les coordonnées du point M' image du point M par la réflexion d'axe (AB).

Exercice 22

Dans le plan muni d'un repère orthonormal, on considère les points I(-1;3) et M(x;y). Déterminer en fonction de x et de y les coordonnées de l'image M' du point M par l'homothétie de centre I et de rapport -2.

Exercice 23

On considère un segment [AB] du plan. Montrer qu'il existe une unique homothétie de rapport -2 qui transforme A en B et déterminer son centre.

Exercice 24

Dans le plan complexe, on considère les points M, N, M' et N' d'affixes respectives 6+i, -3-2i, -2-i et 4+i. Montrer qu'il existe une unique homothétie transformant M en M' et N en N' et déterminer ses éléments caractéristiques.

Réponses

- 1) On a $\overrightarrow{i} = \frac{\sqrt{3}}{2}\overrightarrow{u} + \frac{1}{2}\overrightarrow{v}$ et $\overrightarrow{j} = -\frac{1}{2}\overrightarrow{u} + \frac{\sqrt{3}}{2}\overrightarrow{v}$.
- $\mathbf{2)} \ \ \text{On a} \ z_{r_{-\frac{2\pi}{3}}(\overrightarrow{u})} = e^{-i\frac{2\pi}{3}}(3-2i) = \left(-\frac{3}{2}-\sqrt{3}\right) + \left(1-\frac{3\sqrt{3}}{2}\right)i.$
- 3) $r_{\frac{\pi}{2}}(\overrightarrow{u})\begin{pmatrix} -y \\ x \end{pmatrix}$.
- 4) Les coordonnées polaires du point M sont $\rho = 4 2\sqrt{3}$ et $\theta = -\frac{2\pi}{3}$.
- 5) On a $||2\overrightarrow{u} + 3\overrightarrow{v}||^2 ||3\overrightarrow{u} + 2\overrightarrow{v}||^2 = 5(||\overrightarrow{v}||^2 ||\overrightarrow{u}||^2)$.
- 6) On utilise la relation $MA^2 + MB^2 = (\overrightarrow{MI} + \overrightarrow{IA})^2 + (\overrightarrow{MI} + \overrightarrow{IB})^2$, le lieu géométrique cherché est le cercle de diamètre [AB].
- 7) On s'intéresse aux angles orientés $(\overrightarrow{u}, r_{\frac{\pi}{2}}(\overrightarrow{v}))$ et $(r_{\frac{\pi}{2}}(\overrightarrow{u}), \overrightarrow{v})$.
- 8) $\frac{17}{2}$
- 9) On a $(\overrightarrow{u}, \overrightarrow{v}) = -\frac{\pi}{3}[2\pi]$.
- 10) En utilisant la loi des sinus, on obtient $AB = 2\sqrt{2} (3 \sqrt{3})$ et $AC = 4 (\sqrt{3} 1)$.
- 11) La droite admet pour équation cartésienne 2x + 3y 1 = 0.
- **12)** Un paramétrage de la droite est $\begin{cases} x = -1 t \\ y = 3 + 2t \end{cases}, t \in \mathbb{R}.$
- 13) On montre que la hauteur issue de B admet pour équation cartésienne 2x-3y+4=0 et que la hauteur issue de C admet pour équation cartésienne x+y-6=0, on en déduit que les coordonnées de l'orthocentre sont $\left(\frac{14}{5};\frac{16}{5}\right)$. On montre que la médiatrice du segment [AB] admet pour équation cartésienne x+y-5=0 et que la médiatrice du segment [AC] admet pour équation cartésienne 4x-6y-1=0, on en déduit que les coordonnées du centre du cercle circonscrit sont $\left(\frac{31}{10};\frac{19}{10}\right)$.
- 14) La distance est $\frac{8}{\sqrt{13}}$.
- 15) Le cercle admet pour équation cartésienne $(x-3)^2 + (y-1)^2 = 26$.
- 16) La droite (AB) d'équation cartésienne x y 1 = 0 et le cercle de centre Ω et de rayon 2 d'équation cartésienne $(x-2)^2 + (y+1)^2 = 4$ admettent deux points d'intersection ayant pour coordonnées (2;1) et (0;-1).
- 17) On appelle I le milieu du segment [AB], les cercles de diamètres [AB] et [CI] admettent deux points d'intersection M(6;1) et N(2;3). Les tangentes cherchées sont les droites (CM) et (CN) admettant pour équations cartésiennes 3x 4y 14 = 0 et x 2 = 0.
- 18) On montre que le vecteur $\overrightarrow{MM'}$ a pour coordonnées $\begin{pmatrix} -2\\4 \end{pmatrix}$.
- 19) On montre que le milieu du segment [MM'] a pour coordonnées (-1;2).
- **20)** On obtient M'(1 y; x + 3).
- **21)** On obtient $H(\frac{9}{25}x + \frac{12}{25}y + \frac{4}{5}; \frac{12}{25}x + \frac{16}{25}y \frac{3}{5})$ et $M'(-\frac{7}{25}x + \frac{24}{25}y + \frac{8}{5}; \frac{24}{25}x + \frac{7}{25}y \frac{6}{5})$.
- **22)** On obtient M'(-2x-3;-2y+9).
- 23) Le centre de l'homothétie cherchée est le point Ω tel que $\overrightarrow{A\Omega} = \frac{1}{3}\overrightarrow{AB}$.
- **24)** L'homothétie cherchée a pour rapport $-\frac{2}{3}$ et son centre a pour affixe $\frac{6-i}{5}$.