VIII. Ensembles de nombres

1 Ensemble \mathbb{N} des nombres entiers naturels

Axiome 1.

- toute partie non vide de N admet un plus petit élément.
- toute partie non vide majorée de N admet un plus grand élément.

Exercice 1.

- Montrer que l'ensemble $E = \left\{ n \in \mathbb{N}/|\sin n| < \frac{n}{100} \right\}$ admet un plus petit élément.
- Montrer que l'ensemble $F = \{n \in \mathbb{N}/2^n < n^3\}$ admet un plus grand élément.

Théorème 1. Principe de récurrence

On considère une propriété P_n dépendant d'un nombre entier naturel n telle que :

- P₀ est vraie (initialisation)
- si P_n est vraie alors P_{n+1} est vraie (**hérédité**) alors la propriété P_n est vraie pour tout $n \in \mathbb{N}$.

Démonstration. Non exigible - On considère l'ensemble $E = \{n \in \mathbb{N}/P_n \text{ fausse}\}$ et on suppose que $E \neq \emptyset$, il admet un plus petit élément $n_0 \neq 0$ et on s'intéresse à P_{n_0-1} .

Remarque 1. Dans le cas ou l'initialisation a lieu pour $n = n_0$, la propriété sera vraie pour tout $n \ge n_0$.

Exemple 1. Montrons que $4^n + 2$ est un multiple de 3 pour tout $n \in \mathbb{N}$.

On considère la propriété (P_n) : $4^n + 2$ est un multiple de 3.

- initialisation : $4^0 + 2 = 3$ est un multiple de 3 donc la propriété P_n est vraie au rang n = 0.
- $h\acute{e}r\acute{e}dit\acute{e}$: supposons qu'il existe un entier naturel $n \in \mathbb{N}$ tel que P_n soit vraie, on a alors $4^n + 2 = 3k$ avec $k \in \mathbb{N}$ d'où $4^n = 3k 2$, $4^{n+1} = 12k 8$ et $4^{n+1} + 2 = 12k 6 = 3(4k 2)$ donc P_{n+1} est vraie.
- conclusion : d'après le principe de récurrence, la propriété P_n est vraie pour tout $n \in \mathbb{N}$.

Exercice 2. Démontrer que pour tout $n \in \mathbb{N}$ et $x \in \mathbb{R}_+$ on a $(1+x)^n \geqslant 1+nx$.

Exercice 3. Montrer que la propriété « $8^n + 1$ est un multiple de 7 » est héréditaire, que peut-on en déduire?

Corollaire 1. Suite définie par récurrence

On considère une fonction f réelle ou complexe et un nombre a réel ou complexe, il existe une unique suite $(u_n)_{n\geqslant 0}$ définie par $\left\{ \begin{array}{cc} u_0 &=& a \\ u_{n+1} &=& f(u_n) \end{array} \right.$, pour tout $n\geqslant 0$

Démonstration. Non exigible - On suppose qu'il existe deux suites distinctes $(u_n)_{n\geqslant 0}$ et $(v_n)_{n\geqslant 0}$ et on considère la propriété (P_n) : $u_n=v_n$.

Exercice 4. Démontrer que la suite $\begin{cases} u_0 = 0 \\ u_{n+1} = 2u_n + 1 \end{cases}$, pour tout $n \ge 0$ définie par récurrence admet pour forme explicite $u_n = 2^n - 1$, pour tout $n \ge 0$.

Remarque 2. On peut également définir une suite par récurrence sur les deux termes précédents en donnant u_0 et u_1 en condition initiale.

Corollaire 2. Principe de récurrence avec prédécesseurs

On considère une propriété P_n dépendant d'un nombre entier naturel n telle que :

- P₀ est vraie (initialisation)
- $si\ P_0\ et\ P_1\ et\ \dots\ et\ P_n\ sont\ vraies\ alors\ P_{n+1}\ vraie\ (hérédité\ forte)$ alors la propriété $P_n\ est\ vraie\ pour\ tout\ n\in\mathbb{N}$.

 $D\acute{e}monstration$. Non exigible - On considère la propriété $Q_n: P_0$ et P_1 et ... et P_n .

Exercice 5. Démontrer que la suite $\begin{cases} u_0 = 1 \\ u_1 = 2 \\ u_{n+2} = 3u_{n+1} - 2u_n, n \geqslant 0 \end{cases}$ définie par récurrence admet pour forme explicite $u_n = 2^n$, $n \geqslant 0$.

Définition 1. Symbole somme

Étant donnés un entier naturel n non nul et n nombres a_1, a_2, \ldots, a_n réels ou complexes, on note :

$$\sum_{1 \le k \le n} a_k = \sum_{k=1}^{k=n} a_k = a_1 + a_2 + \dots + a_n$$

Remarque 3. On a $\sum_{k=1}^{k=n} a = na$ pour a un nombre réel ou complexe et $n \in \mathbb{N}^*$.

Propriété 1. Soit $n \in \mathbb{N}^*$, alors $\left[\sum_{k=1}^{k=n} k = \frac{n(n+1)}{2}\right]$.

Démonstration. Exigible.

Exercice 6. Démontrer que $\sum_{k=0}^{k=n} 2^k = 2^{n+1} - 1$ pour $n \in \mathbb{N}$.

Définition 2. Symbole produit

Étant donnés un entier naturel n non nul et n nombres a_1, a_2, \ldots, a_n réels ou complexes, on note :

$$\prod_{1 \leqslant k \leqslant n} a_k = \prod_{k=1}^{k=n} a_k = a_1 \times a_2 \times \dots \times a_n$$

Remarque 4. On a $\prod_{k=1}^{k=n} a = a^n$ pour a un nombre réel ou complexe et $n \in \mathbb{N}^*$.

Définition 3. Symbole factorielle

Étant donné un entier naturel n on définit sa factorielle n! par :

$$0! = 1$$

$$n! = \prod_{k=1}^{k=n} k = 1 \times 2 \times \dots \times n , n > 0$$

Définition 4. Étant donné un nombre r réel ou complexe, on appelle suite arithmétique de raison r une suite définie par la relation de récurrence $u_{n+1} = u_n + r$, $n \in \mathbb{N}$.

Exemple 2. La suite des entiers pairs et la suite des entiers impairs sont arithmétiques de raison 2.

Propriété 2. | On considère une suite arithmétique $(u_n)_{n\geqslant 0}$ de raison r et $p,q\in\mathbb{N}$ avec $p\leqslant q$, alors :

$$u_q = u_p + (q - p)r$$

$$\sum_{k=p}^{k=q} u_k = (q - p + 1) \frac{u_p + u_q}{2}$$

Démonstration. Exigible - On procède par récurrence sur q.

Exercice 7. Calculer la somme des n premiers entiers impairs.

Définition 5. Étant donné un nombre r réel ou complexe, on appelle suite géométrique de raison r une suite définie par la relation de récurrence $u_{n+1} = u_n \times r$, $n \in \mathbb{N}$.

Exemple 3. La suite des puissances de deux est géométrique.

Propriété 3. | On considère une suite géométrique $(u_n)_{n\geqslant 0}$ de raison r et $p,q\in\mathbb{N}$ avec $p\leqslant q$, alors :

$$u_q = u_p \times r^{q-p}$$

$$\sum_{k=p}^{k=q} u_k = \frac{u_p - r \times u_q}{1 - r} \text{ si } r \neq 1$$

Démonstration. Exigible - On procède par récurrence sur q.

Exercice 8. Calculer $\sum_{k=0}^{k=n} 2^k$.

2 Ensembles finis

Définition d'un ensemble fini

Définition 6. Image directe et image réciproque

Étant donnés une application $f: E \to F$, $A \subset E$ et $B \subset F$, on appelle image directe de A par f et on note f(A) l'ensemble des images par f des éléments de A et on appelle image réciproque de B par f et on note $f^{-1}(B)$ l'ensemble des antécédents par f des éléments de B:

$$f(A) = \{f(x)/x \in A\}$$
 $f^{-1}(B) = \{x/f(x) \in B\}$

Remarque 5. On a $f(A) \subset F$ et $f^{-1}(B) \subset E$.

Exercice 9. On considère $f: \mathbb{R} \to \mathbb{R}$, déterminer f([-1;1]) et $f^{-1}([1;2])$.

Définition 7. Une application $f: E \to F$ est dite injective si tout élément de F admet au plus un antécédent par f, surjective si tout élément de F admet au moins un antécédent par f et bijective si tout élément de F admet exactement un antécédent par f.

Remarque 6. Une application est bijective si et seulement si elle est à la fois injective et surjective.

Remarque 7. Une application $f: E \to F$ est surjective si et seulement si f(E) = F.

П

supTSI1415Chap08Cours

Remarque 8. Si $f: E \to F$ est injective alors $g: E \to f(E)$ est bijective. $x \mapsto f(x)$

Exemple 4. On considère $f_1: \mathbb{R}_+ \to \mathbb{R}$, $f_2: \mathbb{R} \to \mathbb{R}_+$ et $f_3: \mathbb{R}_+ \to \mathbb{R}_+$: f_1 est une injection $x \mapsto x^2$ $x \mapsto x^2$ $x \mapsto x^2$

tion, f_2 est une surjection et f_3 est une bijection.

Exercice 10. Montrer que $f: \mathbb{R}^* \to \mathbb{R}$ est injective. $x \mapsto \frac{1}{x}$

Définition 8. Étant donnés $p,q \in \mathbb{N}$ avec $p \leqslant q$, on note $\llbracket p,q \rrbracket = \{n \in \mathbb{N}/p \leqslant n \leqslant q\} \rrbracket$

Définition 9. Un ensemble E est dit fini s'il est vide ou s'il existe $n \in \mathbb{N}^*$ et une bijection de [1, n] sur E, le nombre n est alors unique et appelé cardinal ou nombre d'éléments de l'ensemble E noté Card(E), on convient que $Card(\emptyset) = 0$.

Remarque 9. La bijection de la définition correspond à l'idée intuitive de numérotation.

Exercice 11. Montrer que l'ensemble E = [5, 10] est fini et déterminer son cardinal.

Propriété 4. On considère deux ensembles E et F avec $E \subset F$, si F est un ensemble fini alors E est un ensemble fini et $Card(E) \leq Card(F)$ avec Card(E) = Card(F) si et seulement si E = F.

Démonstration. Hors programme.

Propriété 5. On considère deux ensembles finis E et F ainsi qu'une bijection $f: E \to F$ alors Card(E) = Card(F).

Démonstration. Hors programme.

Propriété 6. On considère deux ensembles finis E et F avec Card(E) = Card(F) ainsi qu'une application $f: E \to F$ alors les propositions suivantes sont équivalentes :

- f est injective
- f est surjective
- f est bijective

Démonstration. Hors programme.

Contre-exemple 1. L'application $f: \mathbb{N} \to \mathbb{N}$ est injective mais pas surjective. $n \mapsto n^2$

2.2 Dénombrements

Propriété 7. On considère deux ensembles finis E et F alors $E \cup F$ et $E \cap F$ sont des ensembles finis et $\operatorname{Card}(E \cup F) = \operatorname{Card}(E) + \operatorname{Card}(F) - \operatorname{Card}(E \cap F)$.

Démonstration. Hors programme.

Exercice 12. Vérifier la formule avec E = [2, 5] et F = [3, 7].

Propriété 8. On considère deux ensembles finis E et F alors $E \times F = \{(x;y)/x \in E, y \in F\}$ est un ensemble fini et $\boxed{\operatorname{Card}(E \times F) = \operatorname{Card}(E) \times \operatorname{Card}(F)}$.

Démonstration. Hors programme.

Exercice 13. Déterminer les éléments de $[1,2] \times [1,3]$.

Propriété 9. On considère deux ensembles finis E et F alors l'ensemble $\mathcal{F}(E,F)$ des applications de E dans F est un ensemble fini et $\boxed{\operatorname{Card}(\mathcal{F}(E,F)) = \operatorname{Card}(F)^{\operatorname{Card}(E)}}$.

Démonstration. Hors programme.

Exercice 14. Déterminer les éléments de $\mathcal{F}([1,2],[1,3])$.

Exercice 15. Déterminer les injections de [1,2] dans [1,3].

Propriété 10. On considère un ensemble fini E de cardinal n, l'ensemble des bijections de E dans E appelées également permutations est de cardinal n!.

Démonstration. Hors programme.

Exercice 16. Déterminer les permutations de [1,3].

Propriété 11. On considère un ensemble fini E, alors l'ensemble $\mathcal{P}(E)$ des parties de E est un ensemble fini $et \left[\operatorname{Card}(\mathcal{P}(E)) = 2^{\operatorname{Card}(E)}\right]$.

Démonstration. Hors programme.

Exercice 17. Déterminer $\mathcal{P}([1,3])$.

Propriété 12. On considère un ensemble fini E de cardinal $n \neq 0$ et $p \in [0, n]$, alors l'ensemble des parties de E ayant p éléments est un ensemble fini de cardinal $n \neq 0$ et $p \in [0, n]$, alors l'ensemble des parties $n \in E$ ayant $n \in E$ ay

Démonstration. Hors programme.

Exercice 18. Déterminer les parties de [1,4] ayant 2 éléments.

Propriété 13. On considère $n \in \mathbb{N}^*$, alors :

$$\begin{pmatrix} n \\ p \end{pmatrix} = \begin{pmatrix} n \\ n-p \end{pmatrix}, p \in \llbracket 0,n \rrbracket$$

$$\begin{pmatrix} n \\ p \end{pmatrix} = \begin{pmatrix} n-1 \\ p-1 \end{pmatrix} + \begin{pmatrix} n-1 \\ p \end{pmatrix}, p \in \llbracket 1,n-1 \rrbracket$$

$$\sum_{k=0}^{k=n} \begin{pmatrix} n \\ k \end{pmatrix} = 2^n$$

Démonstration. Non exigible - On construit une bijection entre l'ensemble des parties de E ayant p éléments et l'ensemble des parties de E ayant p éléments, on partage l'ensemble des parties de E ayant p éléments entre celles possédant ou ne possédant pas un élément donné. On remarque que l'ensemble des parties de E peut être partitionné en utilisant les ensembles des parties de E ayant p éléments.

Propriété 14. Formule du binôme

On considère x et y deux nombres réels ou complexes et $n \in \mathbb{N}^*$ alors :

$$(x+y)^n = \sum_{k=0}^{k=n} \binom{n}{k} x^{n-k} y^k$$

Démonstration. Non exigible - On procède par récurrence sur $n \in \mathbb{N}^*$.