VIII. Ensembles de nombres

Exercice 1

Démontrer que pour tout $n \in \mathbb{N}$ on a $n \leq 2^n$.

Exercice 2

Démontrer que le n-ième nombre entier impair est 2n-1.

Exercice 3

Démontrer que pour tout $n \in \mathbb{N}$, la fonction sinus est n fois dérivable sur \mathbb{R} et

$$\sin^{(n)}(x) = \sin\left(x + n\frac{\pi}{2}\right), \ x \in \mathbb{R}.$$

Exercice 4

Montrer que si $n \in \mathbb{N}$ est un multiple de 3 alors le reste de la division euclidienne de 2^n par 7 vaut 1.

Exercice 5

On considère la suite
$$\left\{ \begin{array}{rcl} u_0&=&0\\ u_1&=&1\\ u_{n+2}&=&5u_{n+1}-6u_n\ ,\ n\geqslant 0 \end{array} \right. .$$

Démontrer qu'elle admet pour forme explicite $u_n = 3^n - 2^n$, $n \ge 0$.

Exercice 6

Démontrer que pour tout $n \in \mathbb{N}$, la fonction $f: \mathbb{R}_+^* \to \mathbb{R}$ est n fois dérivable sur \mathbb{R}_+^* et $x \mapsto \frac{1}{x}$

déterminer sa dérivée n-ième.

Exercice 7

On considère la suite
$$\left\{ \begin{array}{rcl} u_0&=&1\\ u_1&=&1\\ u_{n+2}&=&(n+2)(u_n+u_{n+1})\ ,\ n\in\mathbb{N} \end{array} \right. .$$

Démontrer que $n! \leq u_n \leq (n+1)!$ pour tout $n \in \mathbb{N}$.

Exercice 8

Calculer
$$\sum_{k=0}^{k=n} (2k+1)$$
 et $\prod_{k=0}^{k=n} 2^k$.

Exercice 9

Montrer que
$$(k+1)! - k! = k(k!)$$
, en déduire $\sum_{k=0}^{k=n} k(k!)$.

Exercice 10

On considère la suite
$$\begin{cases} u_0 &= 1 \\ u_{n+1} &= 3 u_n + 2, n \in \mathbb{N} \end{cases}.$$

Déterminer a tel que la suite $(v_n)_{n\geqslant 0}$ définie par $v_n=u_n+a$, $n\in\mathbb{N}$ soit géométrique, en déduire la forme explicite de la suite $(u_n)_{n\geqslant 0}$.

Exercice 11

Calculer
$$\sum_{k=0}^{k=n} 2^{2k+1}$$
 et $\prod_{k=0}^{k=n} 2^{2k+1}$.

Exercice 12

On considère la fonction
$$f: \mathbb{R} \to \mathbb{R}$$
 , déterminer $f([-2;2])$ et $f^{-1}([-7;20])$. $x \mapsto 2x^3 + 3x^2 - 12x$

Exercice 13

On considère les fonctions
$$f: \mathbb{R} \to \mathbb{R}_+$$
 et $g: \mathbb{R}_+ \to \mathbb{R}$.
 $x \mapsto x^2$ $x \mapsto \sqrt{x}$.

Montrer que l'on peut définir $f \circ g$ et $g \circ f$ et les expliciter.

Exercice 14

Montrer que l'application
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 est bijective. $(x;y) \mapsto (x+y;x-y)$

Exercice 15

Déterminer le nombre de surjections de [1; 3] dans [1; 2].

Exercice 16

Déterminer le nombre d'injections de [1; p] dans [1; n].

Exercice 17

Un domino est composé de deux parties comprenant chacune un nombre entier compris entre 0 et 6. Combien y a-t-il de dominos distincts?

Exercice 18

On appelle main un ensemble de cinq cartes. Combien existe-t-il de mains formées à partir d'un jeu de 32 cartes comprenant au moins 3 as?

Exercice 19

Calculer la probabilité d'obtenir un carré dans une main à partir d'un jeu de 52 cartes.

Exercice 20

Déterminer le nombre de diviseurs positifs de 720.

Exercice 21

On considère une table circulaire comportant 2n places, $n \in \mathbb{N}^*$. On désire disposer autour de cette table les 2n individus que constituent n couples hétérosexuels.

- 1. Déterminer le nombre de dispositions des 2n individus.
- 2. Déterminer le nombre de dispositions des 2n individus respectant l'alternance homme-femme.
- 3. Déterminer le nombre de dispositions des 2n individus ne séparant pas les couples.
- 4. Déterminer le nombre de dispositions des 2n individus ne séparant pas les couples et respectant l'alternance homme-femme.

Exercice 22

On considère la fonction $f: x \mapsto (e^x + 1)^n$, $n \in \mathbb{N}$. Montrer que f est dérivable et exprimer f et f' à l'aide de la formule du binôme de Newton, en déduire $\sum_{k=0}^{k=n} k \binom{n}{k}$.

3/4

Réponses

- 1) On procède par récurrence sur n.
- 2) On procède par récurrence sur $n \in \mathbb{N}^*$.
- 3) On procède par récurrence sur n en remarquant que $\cos x = \sin\left(x + \frac{\pi}{2}\right)$.
- 4) On pose n = 3k et on procède par récurrence sur k.
- 5) On procède par récurrence forte sur n.
- **6)** $f^{(n)}(x) = \frac{(-1)^n n!}{x^{n+1}}.$
- 7) On procède par récurrence avec prédécesseurs sur n.
- 8) $(n+1)^2$ et $2^{\frac{n(n+1)}{2}}$.
- 9) (n+1)!-1.
- **10)** $u_n = 2 \times 3^n 1$, $n \in \mathbb{N}$.
- 11) $\frac{1}{3} (2^{2n+3} 2)$ et $2^{[(n+1)^2]}$.
- **12)** f([-2;2]) = [-7;20] et $f^{-1}([-7;20]) = \left[-\frac{7}{2};\frac{5}{2}\right]$.
- **13)** $f \circ g: \mathbb{R}_+ \to \mathbb{R}_+ \text{ et } g \circ f: \mathbb{R} \to \mathbb{R}_+ .$ $x \mapsto x \qquad x \mapsto |x|.$
- 14) On montre que f est injective et surjective.
- **15**) 6.
- **16)** 0 si p > n et $\frac{n!}{(n-p)!}$ sinon.
- **17)** $7 + \binom{7}{2} = 28$ dominos.
- **18)** $\begin{pmatrix} 4 \\ 4 \end{pmatrix} \begin{pmatrix} 28 \\ 1 \end{pmatrix} + \begin{pmatrix} 4 \\ 3 \end{pmatrix} \begin{pmatrix} 28 \\ 2 \end{pmatrix} = 1540.$
- **19)** $\frac{13\times48}{\binom{52}{5}} = \frac{13\times48\times1\times2\times3\times4\times5}{52\times51\times50\times49\times48} = \frac{1}{17\times5\times49} = \frac{1}{4165}$.
- **20)** $720 = 2^4 \times 3^2 \times 5$ admet $5 \times 3 \times 2 = 30$ diviseurs.
- 21) 1. (2n)!: on place d'abord un individu sur une place donnée puis les autres successivement en tournant autour de la table.
 - 2. $2(n!)^2 : 2n \times n \times (n-1) \times (n-1) \times (n-2) \times (n-2) \dots$
 - 3. $2^{n+1}n!$ si n > 1 et 2 si n = 1: une fois placé le premier individu, il y a deux façons de placer son conjoint si n > 1, pour les couples suivants il n'y a qu'une façon de placer le conjoint.
 - 4. 4n! si n > 1 et 2 si n = 1.
- **22)** La somme vaut $f'(0) = n2^{n-1}$.