X. Polynômes

Exercice 1

On considère le polynôme $P(X) = X^2 - X + 1$. Calculer $(P(X))^2$ et P(P(X)).

Exercice 2

Étant donné $n \in \mathbb{N}$, on considère le polynôme $P_n(X) = \sum_{k=0}^{k=n} \binom{n}{k} X^k (1-X)^{n-k}$. Calculer $P_0(X)$, $P_1(X)$, $P_2(X)$ et $P_3(X)$, que peut-on dire de $P_n(X)$ pour $n \in \mathbb{N}$?

Exercice 3

Montrer qu'un polynôme $P \in \mathbb{C}[X]$ est pair si et seulement si il existe un polynôme $Q \in \mathbb{C}[X]$ tel que $P(X) = Q(X^2)$.

Exercice 4

Déterminer le degré du polynôme $P(X) = (X^2 + 1)^n + (X^2 - 1)^n - 2X^{2n}$ pour $n \in \mathbb{N}$.

Exercice 5

Déterminer les polynômes $P \in \mathbb{C}[X]$ vérifiant l'égalité $P(X^2) = (X^2 + 1)P(X)$. (on pourra commencer par déterminer le degré de P)

Exercice 6

Déterminer les polynômes $P \in \mathbb{C}[X]$ vérifiant l'égalité P(P(X)) = P(X). (on pourra commencer par déterminer le degré de P)

Exercice 7

Montrer que X^2 divise $(X+1)^n - nX - 1$ pour tout $n \in \mathbb{N}^*$. (on pourra commencer par déterminer les coefficients des monômes de degré 0 et 1)

Exercice 8

Déterminer le quotient et le reste de la division euclidienne de $X^3 + X^2 + 9$ par $X^2 - 2X + 3$.

Exercice 9

Déterminer les réels a et b tels que le polynôme $X^2 + aX + 1$ divise le polynôme $X^4 + bX^2 + 1$.

Exercice 10

Déterminer les polynômes $P \in \mathbb{C}[X]$ de degré 3 dont le reste de la division euclidienne par $X^2 - 1$ est 1 - X et dont le reste de la division euclidienne par $X^2 + 1$ est X - 1.

Exercice 11

On considère deux nombres complexes α et β distincts et un polynôme $P \in \mathbb{C}[X]$. Exprimer le reste de la division euclidienne de P(X) par $(X - \alpha)(X - \beta)$ en fonction de $P(\alpha)$ et $P(\beta)$.

Exercice 12

On considère le polynôme $P(X) = X^5 + 2X^4 + X^3 + X^2 + 2X + 1$. Montrer que -1 est racine de P et déterminer son ordre de multiplicité.

Exercice 13

Montrer que le polynôme $X^3 - X^2 - 2X + 1$ admet trois racines réelles distinctes α , β et γ et déterminer pour chacune de ces racines un encadrement par deux entiers consécutifs, calculer leur somme et leur produit.

Exercice 14

Décomposer le polynôme $P(X) = X^3 - X^2 + 2iX - 2i$ en produit de facteurs irréductibles dans $\mathbb{C}[X]$.

Exercice 15

Décomposer le polynôme $P(X) = X^4 - 1$ en produit de facteurs irréductibles dans $\mathbb{C}[X]$ et dans $\mathbb{R}[X]$.

Exercice 16

Montrer que i est une racine complexe du polynôme $P(X) = X^4 + X^3 + 2X^2 + X + 1$, en déduire une factorisation de P(X) dans $\mathbb{R}[X]$.

Exercice 17

On considère un nombre complexe α et un polynôme $P \in \mathbb{C}[X]$. Exprimer le reste de la division euclidienne de P(X) par $(X - \alpha)^2$ en fonction de $P(\alpha)$ et $P'(\alpha)$.

Exercice 18

Déterminer les polynômes $P \in \mathbb{C}[X]$ tels que 3P(X) = XP'(X) + P''(X). (on pourra commencer par déterminer le degré de P)

Exercice 19

Déterminer les polynômes $P \in \mathbb{C}[X]$ vérifiant l'égalité $P'^2 = 4P$. (on pourra commencer par déterminer le degré de P)

Exercice 20

Déterminer les polynômes $P \in \mathbb{C}[X]$ vérifiant l'égalité $P' + P = \frac{1}{n!}X^n$ avec $n \in \mathbb{N}$.

Exercice 21

Déterminer $P \in \mathbb{C}[X]$ tel que P(1) = 0, P'(1) = 1, P''(1) = 2 et $P^{(k)}(1) = 0$ pour tout $k \geqslant 3$.

Exercice 22

Déterminer $z \in \mathbb{C}$ pour que le polynôme $P(X) = X^3 + 3X + z$ admette une racine double, factoriser dans ce cas le polynôme P(X).

Exercice 23

Montrer que 1 est racine du polynôme $nX^{n+1} - (n+1)X^n + 1$ pour $n \in \mathbb{N}^*$ et déterminer son ordre.

Exercice 24

Montrer que le polynôme $X^{n+2} - X + 1$ n'admet que des racines simples pour tout $n \in \mathbb{N}$.

Exercice 25

Montrer que pour tout $n \in \mathbb{N}$ le polynôme $P_n(X) = \sum_{k=0}^{k=n} \frac{X^k}{k!}$ possède n racines distinctes dans \mathbb{C} .

Réponses

1)
$$(P(X))^2 = X^4 - 2X^3 + 3X^2 - 2X + 1$$
 et $P(P(X)) = X^4 - 2X^3 + 2X^2 - X + 1$.

2)
$$P_n(X) = [X + (1 - X)]^n = 1$$
 pour tout $n \in \mathbb{N}$.

3) On montre que
$$P(X) = \sum_{k=0}^{k=n} a_k X^{2k}$$
.

4)
$$\deg(P) = -\infty \text{ si } n < 2 \text{ et } \deg(P) = 2n - 4 \text{ si } n \ge 2$$

5)
$$P(X) = a(X^2 - 1)$$
 avec $a \in \mathbb{C}$.

6) P est un polynôme constant ou le polynôme identité.

7)
$$a_0 = \binom{n}{0} - 1 = 0$$
 et $a_1 = \binom{n}{1} - n = 0$.

8)
$$Q(X) = X + 3$$
 et $R(X) = 3X$.

9)
$$R(X) = a(2-b-a^2)X + (b-2+a^2)$$
 d'où $a^2 + b = 2$.

10)
$$P(X) = -X^3 + X^2$$

11)
$$R(X) = \frac{P(\alpha) - P(\beta)}{\alpha - \beta} X + \frac{\alpha P(\beta) - \beta P(\alpha)}{\alpha - \beta}.$$

12)
$$-1$$
 est une racine d'ordre 3 du polynôme P .

13)
$$-2 < \alpha < -1, \ 0 < \beta < 1, \ 1 < \gamma < 2$$
 de plus $\alpha + \beta + \gamma = 1$ et $\alpha \beta \gamma = -1$.

14)
$$P(X) = (X-1)(X-1+i)(X+1-i).$$

15)
$$P(X) = (X-1)(X-i)(X+1)(X+i) = (X-1)(X+1)(X^2+1).$$

16)
$$P(X) = (X^2 + 1)(X^2 + X + 1).$$

17)
$$P(X) = P'(\alpha)(X - \alpha) + P(\alpha)$$
.

18)
$$P(X) = aX(X^2 + 3)$$
 avec $a \in \mathbb{C}$.

19)
$$P = 0$$
 ou $P = (X + a)^2$ avec $a \in \mathbb{C}$.

20)
$$P(X) = \sum_{k=0}^{k=n} \frac{(-1)^{n-k}}{k!} X^k.$$

21)
$$P(X) = 0 + 1(X - 1) + 2\frac{(X - 1)^2}{2!} = X^2 - X.$$

22)
$$z = -2i$$
 et $P(X) = (X + 2i)(X - i)^2$ ou $z = 2i$ et $P(X) = (X - 2i)(X + i)^2$.

24) Une racine double
$$\alpha$$
 de P est racine de P' , on obtient $\alpha = \frac{n+2}{n+1} > 1$ et $\alpha^{n+1} = \frac{1}{n+2} < 1$.

25) On remarque que
$$P_n(X) = \frac{X^n}{n!} + P'_n(X)$$
 et on en déduit que P_n ne possède pas de racine d'ordre supérieur ou égal à 2.