XI. Limites

Exercice 1

La fonction $f: x \mapsto \lfloor -|x| \rfloor$ admet-elle une limite, une limite à gauche ou une limite à droite en 0?

Exercice 2

Étudier la limite en 0 de la fonction $f: x \mapsto \frac{xe^{\frac{1}{x^2}}}{x^2+1}$.

Exercice 3

Étudier la limite en $+\infty$ de la fonction $f: x \mapsto \ln(x^2 + 1) - x$.

Exercice 4

Étudier la limite à gauche et à droite en 1 des fonctions $f: x \mapsto \frac{x^2 - 3x + 2}{(x - 1)^2}$ et $g: x \mapsto \frac{x^2 - 3x + 2}{x^2 - 1}$.

Exercice 5

Étudier la limite en $+\infty$ de la fonction $f: x \mapsto \sqrt{x^2 + x} - x$.

Exercice 6

Étudier la limite à gauche et à droite en 0 de la fonction $f: x \mapsto \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$.

Exercice 7

La fonction $f: x \mapsto x \cos x$ admet-elle une limite en $+\infty$?

Exercice 8

Montrer que la fonction $f: x \mapsto \left\{ \begin{array}{ccc} 0 & \text{si} & x \leqslant 0 \\ x \ln x & \text{si} & x > 0 \end{array} \right.$ est continue sur \mathbb{R} .

Exercice 9

Montrer que la fonction $f:x\mapsto x\,\lfloor\frac{1}{x}\rfloor$ peut se prolonger par continuité en 0.

Exercice 10

Montrer que la fonction $f: x \mapsto \lfloor x \rfloor + \sqrt{x - \lfloor x \rfloor}$ est continue sur \mathbb{R} .

Exercice 11

On considère une fonction $f \in \mathcal{C}(\mathbb{R}, \mathbb{R})$ admettant une limite finie en $-\infty$ et $+\infty$. Montrer que f est bornée.

Exercice 12

Montrer que l'équation $x^3 - x + 1 = 0$ admet une unique solution réelle et en donner un encadrement à l'unité.

Exercice 13

Montrer que toute fonction $f \in \mathcal{C}([0;1],[0;1])$ admet un point fixe. (On pourra considérer la fonction g définie par g(x) = x - f(x))

Exercice 14

Déterminer l'image directe de l'intervalle [-2;2] par la fonction $f: x \mapsto -\frac{1}{5}x^3 + \frac{9}{5}x$.

Exercice 15

Montrer que la fonction $f: x \mapsto \frac{x}{1+|x|}$ réalise une bijection de \mathbb{R} sur]-1;1[et expliciter son application réciproque.

Exercice 16

On considère la fonction $f: x \mapsto \frac{x^3 - 1}{2x^2 + 1}$.

Déterminer un équivalent simple de f au voisinage de $+\infty$ puis au voisinage de 1.

Exercice 17

On considère trois fonctions f,g et h à valeurs réelles définies sur un voisinage de $+\infty$. Montrer que si f = o(g) et g = O(h) alors f = o(h).

Exercice 18

Déterminer un équivalent simple en $+\infty$ de la fonction $f: x \mapsto \lfloor x - \ln x \rfloor$.

Exercice 19

Déterminer un équivalent simple en $+\infty$ de la fonction $f: x \mapsto \sqrt{x^2 + 1} - x$.

Exercice 20

On considère deux fonctions f, g à valeurs réelles $f \underset{+\infty}{\sim} g$, a-t-on $e^f \underset{+\infty}{\sim} e^g$?

Réponses

- 1) On a $\lim_{\substack{x\to 0\\x<0}} f(x) = -1$ et $\lim_{\substack{x\to 0\\x>0}} f(x) = -1$, la fonction f n'admet pas de limite en 0 car f(0) = 0.
- 2) On pose $X = \frac{1}{x^2}$ d'où $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{X \to +\infty \\ x > 0}} \frac{e^X}{\sqrt{X}} = +\infty$ et $\lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{X \to +\infty \\ x < 0}} \frac{e^X}{-\sqrt{X}} = -\infty$.
- 3) On a $f(x) = x\left(2\frac{\ln x}{x} 1\right) + \ln\left(1 + \frac{1}{x^2}\right)$ d'où $\lim_{x \to +\infty} f(x) = -\infty$.
- 4) On a $f(x) = \frac{x-2}{x-1}$ d'où $\lim_{\substack{x \to 1 \\ x < 1}} f(x) = +\infty$ et $\lim_{\substack{x \to 1 \\ x > 1}} f(x) = -\infty$ de même $g(x) = \frac{x-2}{x+1}$ d'où $\lim_{\substack{x \to 1 \\ x < 1}} g(x) = \lim_{\substack{x \to 1 \\ x > 1}} g(x) = -\frac{1}{2}$.
- **5)** On a $f(x) = \frac{x}{\sqrt{x^2 + x} + x}$ d'où $\lim_{x \to +\infty} f(x) = \frac{1}{2}$.
- **6)** On a $f(x) = \frac{2}{\sqrt{1+x} + \sqrt{1-x}}$ pour $x \neq 0$ d'où $\lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} f(x) = 1$.
- 7) On pose $u_n = 2n\pi$ et $v_n = (2n+1)\pi$, si la fonction f continue sur \mathbb{R} admettait une limite l en $+\infty$ on aurait $\lim_{n \to +\infty} f(u_n) = \lim_{n \to +\infty} f(v_n) = l$.
- 8) On montre que $\lim_{x\to 0} f(x) = f(0)$.
- 9) On a $1 x < f(x) \le 1$ si x > 0 et $1 x > f(x) \ge 1$ si x < 0 d'où $\lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} f(x) = 1$.
- **10)** On pose $a \in \mathbb{Z}$, f est continue sur]a; a+1[car $f(x)=a+\sqrt{x-a}$ pour $x \in]a; a+1[$ et de plus $\lim_{\substack{x \to a \\ x < a}} f(x) = a-1+\sqrt{1} = a = f(a)$ et $\lim_{\substack{x \to a \\ x > a}} f(x) = a+\sqrt{0} = a = f(a)$.
- 11) On montre que f est bornée pour $x \leq M_1$ et pour $x \geq M_2$ puis si $x_1 < x_2$ on considère l'image du segment $[x_1; x_2]$ par la fonction f continue sur \mathbb{R} .
- **12)** On étudie les variations de la fonction $f: x \mapsto x^3 x + 1$, f s'annule en $\alpha \in]-2,-1[$.
- 13) La fonction g est continue sur [0;1] avec $g(0) \le 0$ et $g(1) \ge 0$ donc s'annule sur [0;1].
- **14)** On a $f([-2;2]) = [-\frac{6}{5}\sqrt{3}; \frac{6}{5}\sqrt{3}].$
- **15)** En divisant l'étude sur \mathbb{R}_- et \mathbb{R}_+ , on montre que f est strictement croissante et que $f(\mathbb{R}) =]-1;1[$, l'application réciproque est $y \mapsto \frac{y}{1-|y|}$.
- **16)** On a $f \sim \frac{1}{2} x$ et $f \sim x 1$.
- 17) On remarque que le produit d'un fonction bornée au voisinage de $+\infty$ par une fonction qui tend vers 0 en $+\infty$ est une fonction qui tend vers 0 en $+\infty$.
- **18)** On montre par encadrement que $f(x) \underset{+\infty}{\sim} x$.
- **19)** On a $f(x) = \frac{1}{\sqrt{x^2 + 1} + x}$ d'où $f(x) \sim \frac{1}{2x}$.
- **20)** Contre-exemple : f(x) = x et g(x) = x + 1.