XIII. Dérivation

Exercice 1

La fonction
$$f: \mathbb{R} \to \mathbb{R}$$
 est-elle dérivable sur \mathbb{R} ? $x \mapsto \begin{cases} 2x^2 + x + 2 & \text{si} & x < 1 \\ x^2 + 3x + 1 & \text{si} & x \geqslant 1 \end{cases}$

Exercice 2

Montrer que la fonction $x \mapsto x \ln x$ peut se prolonger par continuité en une fonction \tilde{f} définie sur $[0; +\infty[$. La fonction \tilde{f} est-elle dérivable sur $[0; +\infty[$?

Exercice 3

On considère $f \in \mathcal{D}(\mathbb{R}, \mathbb{R})$, montrer que si f est paire alors f' est impaire et que si f est impaire alors f' est paire.

Exercice 4

Étudier
$$\lim_{\substack{x \to 0 \\ x \neq 0}} \frac{\sqrt[3]{1+x}-1}{x}$$
 puis $\lim_{\substack{x \to \frac{\pi}{3} \\ x \neq \frac{\pi}{3}}} \frac{2\cos x - 1}{\pi - 3x}$.

Exercice 5

Montrer que si une fonction $f \in \mathcal{F}(I,\mathbb{R})$ est dérivable en $a \in I$ alors $\frac{f(a+h) - f(a-h)}{2h} \xrightarrow[h \to 0]{} f'(a)$.

Exercice 6

On considère une fonction $f \in \mathcal{F}(I,\mathbb{R})$ dérivable en $a \in I$, étudier $\lim_{x \to a} \frac{xf(a) - af(x)}{x - a}$.

Exercice 7

Calculer
$$\sum_{k=0}^{k=n} ke^{kx}$$
.

Exercice 8

$$\text{Montrer que } \arctan \left(\frac{e^{2x} - e^{-2x}}{2} \right) = 2 \arctan \left(\frac{e^x - e^{-x}}{e^x + e^{-x}} \right) \ \text{ pour tout } x \in \mathbb{R}.$$

Exercice 9

Montrer que la fonction $f: x \mapsto \frac{1}{1+x}$ est n fois dérivable sur]-1;1[et déterminer $f^{(n)}(x)$. En déduire que les fonctions $g: x \mapsto \frac{1}{1-x}$ et $h: x \mapsto \frac{1}{1-x^2}$ sont n fois dérivables sur]-1;1[et déterminer $g^{(n)}(x)$ et $h^{(n)}(x)$.

Exercice 10

Montrer que la fonction $x \mapsto (x^2 + x + 1)e^{-x}$ est n fois dérivable sur \mathbb{R} et calculer sa dérivée n-ième. (on pourra utiliser la formule de Leibniz)

Exercice 11

Montrer que la fonction
$$f: \mathbb{R} \to \mathbb{R}$$
 est de classe \mathcal{C}^1 sur \mathbb{R} .
$$x \mapsto \begin{cases} e^x & \text{si } x < 0 \\ x + 1 & \text{si } x \geqslant 0 \end{cases}$$

Exercice 12

Montrer que la fonction $x \mapsto x^2 \sin\left(\frac{1}{x}\right)$ est prolongeable par continuité sur \mathbb{R} en une fonction f dérivable sur \mathbb{R} . La fonction f est-elle de classe \mathcal{C}^1 sur \mathbb{R} ?

Exercice 13

Déterminer les solutions de l'équation différentielle $t^3y'-2y=0$ définies sur \mathbb{R} .

Exercice 14

On considère une fonction $f \in \mathcal{D}(\mathbb{R}, \mathbb{R})$ périodique, montrer que f' s'annule une infinité de fois.

Exercice 15

On considère $f,g\in\mathcal{D}([a;b],\mathbb{R})$ avec g' ne s'annulant pas sur [a;b]. Montrer que $g(a)\neq g(b)$ et qu'il existe $c\in]a;b[$ tel que $\dfrac{f(b)-f(a)}{g(b)-g(a)}=\dfrac{f'(c)}{g'(c)}.$ (on pourra considérer la fonction $h:x\mapsto [f(b)-f(a)]g(x)-[g(b)-g(a)]f(x))$

Exercice 16

Montrer en utilisant l'inégalité des accroissements finis que $x \cos x \le \sin x \le x$ pour tout $x \in [0; \frac{\pi}{2}]$.

Exercice 17

Montrer en utilisant l'inégalité des accroissements finis que $\frac{x}{x+1} \le \ln(1+x) \le x$ pour tout $x \in \mathbb{R}_+$.

Exercice 18

On considère l'équation $(E): (x-1)e^x + x = 0.$

- 1. Montrer que l'équation (E) admet une unique solution réelle α et l'encadrer par deux entiers consécutifs.
- 2. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{e^{u_n}}{e^{u_n} + 1} \text{ pour tout } n \in \mathbb{N} \end{cases}.$
 - (a) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers α .
 - (b) Montrer que $|u_{n+1} \alpha| \leq \frac{1}{4} |u_n \alpha|$ pour tout $n \in \mathbb{N}$ et en déduire que $|u_n \alpha| \leq \frac{1}{4^n}$ pour tout $n \in \mathbb{N}$.

Exercice 19

On considère la fonction $f: x \mapsto xe^{-x^2}$.

- 1. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ associée à la fonction f par la méthode de Newton vérifie la relation de récurrence $u_{n+1} = \frac{2u_n^3}{2u_n^2 1}$ pour tout $n \in \mathbb{N}$.
- 2. Montrer que si $u_0 = \pm \frac{1}{2}$, la suite $(u_n)_{n \in \mathbb{N}}$ diverge.

Exercice 20

On considère la fonction $f: x \mapsto \ln x - 1$.

- 1. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ associée à la fonction f par la méthode de Newton vérifie la relation de récurrence $u_{n+1} = u_n(2 \ln u_n)$ pour tout $n \in \mathbb{N}$.
- 2. Montrer que si $u_0 \in]0;e]$ alors la suite $(u_n)_{n\in\mathbb{N}}$ est croissante majorée par e et en déduire qu'elle converge vers e.
- 3. Montrer que si $u_0 \in]0; e]$ alors $e u_{n+1} \leq (e u_n)(1 \ln u_n)$ pour tout $n \in \mathbb{N}$.
- 4. En déduire que si $u_0 \in [1; e]$ alors $e u_{n+1} \leq (e u_n)^2$ pour tout $n \in \mathbb{N}$.

Réponses

- 1) On montre que $\Delta_{f,1}$ admet 5 pour limite à gauche et à droite en 0.
- 2) \tilde{f} n'est pas dérivable en 0.
- 3) On montre que si f est paire $\Delta_{f,-a}(h) = -\Delta_{f,a}(-h)$ et que si f est impaire $\Delta_{f,-a}(h) = \Delta_{f,a}(-h)$.
- 4) $\frac{1}{3}$ et $\frac{\sqrt{3}}{3}$.
- 5) On utilise un développement limité d'ordre 1 de f en a.
- **6)** f(a) af'(a).
- 7) On pose $f(x) = \sum_{k=0}^{k=n} e^{kx} = \frac{1 e^{(n+1)x}}{1 e^x}$, la somme cherchée est $f'(x) = \frac{ne^{(n+2)x} (n+1)e^{(n+1)x} + e^x}{(1 e^x)^2}$. (on traite séparément le cas x = 0)
- 8) On procède par dérivation en remarquant que les fonctions associées ont même dérivée et même valeur en 0.
- 9) $f^{(n)}(x) = \frac{(-1)^n n!}{(1+x)^{n+1}}$ et $g^{(n)}(x) = \frac{n!}{(1-x)^{n+1}}$, on remarque que $h = \frac{1}{2}(f+g)$.
- **10)** Pour $n \ge 2$, on a $f^{(n)}(x) = \binom{n}{0}(x^2 + x + 1) \times (-1)^n e^{-x} + \binom{n}{1}(2x + 1) \times (-1)^{n-1} e^{-x} + \binom{n}{2}2 \times (-1)^{n-2} e^{-x} = (-1)^n [x^2 + (1-2n)x + (n-1)^2] e^{-x}$ et la formule est valable également pour n = 0 ou n = 1.
- 11) On montre que f est continue en 0, dérivable en 0 avec f'(0) = 1 et que f' est continue en 0.
- 12) Le prolongement par continuité de f est dérivable mais sa dérivée n'est pas continue en 0.
- **13)** $f(t) = \begin{cases} C_1 e^{-\frac{1}{t^2}} & \text{si} \quad t < 0 \\ 0 & \text{si} \quad t = 0 \\ C_2 e^{-\frac{1}{t^2}} & \text{si} \quad t > 0 \end{cases}$
- 14) On utilise le théorème de Rolle
- 15) On utilise le théorème de Rolle.
- **16)** On remarque que $\sin'(\theta) = \cos(\theta) \in [\cos x; 1]$ pour $\theta \in [0; x]$.
- 17) On remarque que $\frac{1}{1+c} \in \left[\frac{1}{1+x}; 1\right]$ pour $c \in [0; x]$.
- **18)** 1. $\alpha \in [0; 1]$.
 - 2. (a) On utilise le théorème de la limite monotone en remarquant que la suite est croissante et majorée par 1.
 - (b) On applique l'inégalité des accroissements finis sur l'intervalle $[u_n; \alpha]$ à la fonction $f: x \mapsto \frac{e^x}{e^x + 1}$ en remarquant que $|f'(x)| \leq \frac{1}{4}$ pour $x \in [0; 1]$.
- **19)** 1. On a $u_{n+1} = u_n \frac{f(u_n)}{f'(u_n)}$.
 - 2. On a $u_n = u_0(-1)^n$
- **20)** 1. On a $u_{n+1} = u_n \frac{f(u_n)}{f'(u_n)}$.
 - 2. On étudie les variations de la fonction $g: x \mapsto x(2 \ln x)$ sur l'intervalle [0; e].
 - 3. On applique l'inégalité des accroissements finis à la fonction g sur l'intervalle $[u_n; e]$.
 - 4. On applique l'inégalité des accroissements finis à la fonction ln sur l'intervalle $[u_n; e]$.