XIV. Applications linéaires

Exercice 1

Montrer que $\phi: \mathcal{C}(\mathbb{R}, \mathbb{R}) \to \mathbb{R}$ est une forme linéaire. ϕ est-elle injective? surjective? $f \mapsto \int_0^1 f(x) \, dx$

Exercice 2

Montrer qu'une forme linéaire f sur un \mathbb{K} -espace vectoriel E est soit nulle soit surjective.

Exercice 3

Montrer que $f: \mathbb{R}^3 \to \mathbb{R}^3$ est un automorphisme et déterminer son application $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x \\ x+y \\ x+y+z \end{pmatrix}$

réciproque.

Exercice 4

Montrer que $f: \mathbb{R}^3 \to \mathbb{R}^2$ est une application linéaire, déterminer son noyau et son $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x+y \\ y+z \end{pmatrix}$

image ainsi que leurs dimensions.

Exercice 5

Montrer que $f: P(X) \mapsto XP'(X) - 2P(X)$ est un endomorphisme de $\mathbb{R}_n[X]$, déterminer son noyau et son image ainsi que leurs dimensions.

Exercice 6

On considère $f,g\in\mathcal{L}(E)$ où E est un \mathbb{K} -espace vectoriel. Montrer que Im $f\subset \mathrm{Ker}\ g$ si et seulement si $g\circ f=0.$

Exercice 7

On considère $f, g \in \mathcal{L}(E)$ où E est un \mathbb{K} -espace vectoriel. Montrer que $f(\ker g \circ f) = \ker g \cap \operatorname{Im} f$.

Exercice 8

Montrer que $f: P \mapsto P - P'$ est un automorphisme de $\mathbb{R}_n[X]$ et expliciter son application réciproque. (on pourra utiliser des dérivées successives)

Exercice 9

Étant donné
$$\overrightarrow{u}\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$$
, on définit $p(\overrightarrow{u}) = \begin{pmatrix} x \\ y \\ x+y \end{pmatrix}$ et $s(\overrightarrow{u}) = \begin{pmatrix} x \\ z \\ y \end{pmatrix}$, montrer que p est un projecteur et s une symétrie et déterminer leurs éléments caractéristiques.

Exercice 10

$$\operatorname{Dans} \mathbb{R}^3 \text{ muni de sa base canonique, on considère } F = \left\{ \left(\begin{array}{c} x \\ y \\ z \end{array} \right) \ / \ x + y + z = 0 \right\} \operatorname{et} G = \operatorname{Vect} \left(\left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right) \right).$$

Montrer que $F \oplus G = \mathbb{R}^3$ et calculer les coordonnées de l'image d'un vecteur $\overrightarrow{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ quelconque par la projection sur F parallèlement à G puis par la symétrie par rapport à F parallèlement à G.

Exercice 11

Dans $\mathbb{R}_2[X]$, déterminer l'image d'un polynôme $P(X) = aX^2 + bX + c$ quelconque par la symétrie s par rapport à $\text{Vect}(1 + X + X^2)$ parallèlement à Vect(1, X).

Exercice 12

Montrer que $p \in \mathcal{L}(E)$ est un projecteur si et seulement si s = 2p - Id est une symétrie.

Exercice 13

Montrer que si $s \in \mathcal{L}(E)$ est une symétrie alors $\mathrm{Im}(s+Id) = \mathrm{Ker}(s-Id)$.

Exercice 14

On considère $f \in \mathcal{L}(E)$ où E est un \mathbb{K} -espace vectoriel de dimension finie, que peut-on dire de $\operatorname{rg}(-f)$ et $\operatorname{rg}(2f)$?

Exercice 15

On considère $f, g \in \mathcal{L}(E)$ où E est un \mathbb{K} -espace vectoriel de dimension finie, montrer que $|\operatorname{rg} f - \operatorname{rg} g| \leq \operatorname{rg}(f+g) \leq \operatorname{rg} f + \operatorname{rg} g$.

Exercice 16

On considère $f \in \mathcal{L}(E)$ où E est un \mathbb{K} -espace vectoriel de dimension finie. Montrer que $\operatorname{Ker} f \oplus \operatorname{Im} f = E$ si et seulement si $\operatorname{Ker} f \cap \operatorname{Im} f = \left\{ \overrightarrow{0} \right\}$.

Exercice 17

Montrer que $f: \mathbb{R}_2[X] \to \mathbb{R}_1[X]$ est une application linéaire et déterminer sa matrice $P(X) \mapsto P(X+1) - P(X)$ de la base canonique de $\mathbb{R}_2[X]$ dans la base canonique de $\mathbb{R}_1[X]$.

Exercice 18

Montrer que $f: P(X) \mapsto XP'(X) - 2P(X)$ est un endomorphisme de $\mathbb{R}_n[X]$ et déterminer sa matrice dans la base canonique de $\mathbb{R}_n[X]$.

Exercice 19

Dans l'espace muni d'une base orthonormale directe $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$, déterminer la matrice de la projection orthogonale sur $\text{Vect}(\overrightarrow{j}, \overrightarrow{k})$ ainsi que la matrice de la symétrie orthogonale par rapport à $\text{Vect}(\overrightarrow{j})$.

Exercice 20

On pose $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ et on définit l'application $\phi : \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$. Montrer que ϕ est une application linéaire et déterminer sa matrice dans la base canonique $(E_{11}, E_{12}, E_{21}, E_{22})$ de $\mathcal{M}_2(\mathbb{R})$.

Exercice 21

On considère une application $f: \mathbb{R}^3 \to \mathbb{R}^3$ dont la matrice dans la base canonique \mathcal{B} de \mathbb{R}^3 est $M = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$. Montrer que $\mathcal{B}' = \begin{pmatrix} e_1 & 1 \\ e_1 & 1 \end{pmatrix}$, $\overrightarrow{e_2} \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$, $\overrightarrow{e_3} \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$ est une base de \mathbb{R}^3 et donner la matrice de f dans la base \mathcal{B}' .

Exercice 22

Montrer que $P = \begin{pmatrix} 0 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ est la matrice d'un projecteur p dont on déterminera les éléments caractéristiques.

Exercice 23

Montrer que $S = \begin{pmatrix} -1 & -2 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ est la matrice d'une symétrie s dont on déterminera les éléments caractéristiques.

Exercice 24

On se place dans \mathbb{R}^3 muni de sa base canonique \mathcal{B} . Montrer que $\mathcal{B}' = \begin{pmatrix} \overrightarrow{e_1}' & 0 \\ 1 \\ 1 \end{pmatrix}, \overrightarrow{e_2}' & \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \overrightarrow{e_3}' & \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \end{pmatrix}$ est une base de \mathbb{R}^3 et donner la matrice de passage de \mathcal{B} à \mathcal{B}' ainsi que la matrice de passage de \mathcal{B}' à \mathcal{B} .

Exercice 25

On considère l'endomorphisme f de matrice $M = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ dans la base canonique $\mathcal{B} = (\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$

de \mathbb{R}^3 . Montrer que Kerf est de dimension 1 et en déterminer une base $(\overrightarrow{e_1}')$, montrer que Imf est de dimension 2 et en déterminer une base $(\overrightarrow{e_2}', \overrightarrow{e_3}')$, montrer que $\mathcal{B}' = (\overrightarrow{e_1}', \overrightarrow{e_2}', \overrightarrow{e_3}')$ est une base de \mathbb{R}^3 et déterminer la matrice M' de f dans celle-ci.

Exercice 26

On considère la matrice $M=\begin{pmatrix}1&1&1\\0&2&1\\0&0&3\end{pmatrix}$. Montrer qu'il existe une matrice P inversible telle que $M=PDP^{-1} \text{ avec } D=\begin{pmatrix}1&0&0\\0&2&0\\0&0&3\end{pmatrix} \text{ et en déduire } M^n \text{ pour } n\in\mathbb{N}.$

Exercice 27

Déterminer le rang de la matrice $M = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 1 & 0 & 3 \end{pmatrix}$.

Exercice 28

On note
$$M_{\lambda} = \begin{pmatrix} \lambda & -1 & -1 \\ -1 & \lambda & -1 \\ -1 & -1 & \lambda \end{pmatrix}$$
 pour $\lambda \in \mathbb{R}$. Déterminer le rang de M_{λ} en fonction de λ .

Réponses

- 1) On utilise la linéarité de l'intégrale. ϕ est surjective mais pas injective.
- 2) Si il existe $\overrightarrow{u} \in E$ tel que $f(\overrightarrow{u}) = \alpha \neq 0$ alors pour tout $x \in \mathbb{K}$ on a par linéarité $f\left(\frac{x}{\alpha}\overrightarrow{u}\right) = x$.
- 3) f a pour application réciproque $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x \\ y-x \\ z-y \end{pmatrix}$.
- **4)** Ker $f = \text{Vect} \left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \right\}$ et Im $f = \mathbb{R}^2$.
- 5) Pour $n \ge 2$, Ker $f = \text{Vect}(X^2)$ et Im $f = \text{Vect}(1, X, X^3, \dots, X^n)$.
- 6) On procède par double inclusion.
- 7) On procède par double inclusion.
- 8) On remarque que si P est non nul P-P' est non nul donc Ker $f=\{0\}$ et f est injective donc bijective car $\mathbb{R}_n[X]$ est de dimension finie. On remarque que si P+P'=Q alors $P=Q+Q'+Q''+\cdots+Q^{(n)}$.
- 9) $p \circ p = p$ donc p est un projecteur sur Im p plan vectoriel d'équation x + y z = 0 parallèlement à Ker p droite vectorielle engendrée par le vecteur $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. $s \circ s = Id$ donc s est une symétrie par rapport à $\operatorname{Ker}(s Id)$ plan vectoriel d'équation y z = 0

parallèlement à $\operatorname{Ker}(s-Id)$ droite vectorielle engendrée par le vecteur $\begin{pmatrix} 0\\1\\-1 \end{pmatrix}$.

10)
$$\begin{pmatrix} -y-z \\ y \\ z \end{pmatrix}$$
 et $\begin{pmatrix} -x-2y-2z \\ y \\ z \end{pmatrix}$.

- **11)** On a $aX^2 + bX + c = a(1 + X + X^2 1 X) + bX + c = a(1 + X + X^2) + (b a)X + (c a)$ d'où $s(aX^2 + bX + c) = a(1 + X + X^2) (b a)X (c a) = aX^2 + (2a b)X + (2a c)$.
- **12)** On a $s \circ s = 2p \circ (2p Id) (2p Id) = 4(p \circ p p) + Id$ donc $s \circ s = Id$ équivaut à $p \circ p = p$.
- **13)** On a $(s-Id) \circ (s+Id) = 0$ donc $\operatorname{Im}(s+Id) \subset \operatorname{Ker}(s-Id)$ et si $s(\overrightarrow{u}) = \overrightarrow{u}$ alors $\overrightarrow{u} = (s+Id)(\frac{1}{2}\overrightarrow{u})$ d'où $\operatorname{Ker}(s-Id) \subset \operatorname{Im}(s+Id)$.
- **14)** rg(-f) = rg(2f) = rg f.
- **15)** On remarque que $\text{Im}(f+g) \subset \text{Im } f + \text{Im } g$ puis que f = (f+g) + (-g).
- **16)** D'après le théorème du rang, $\dim(\operatorname{Im} f) = \dim E \dim(\operatorname{Ker} f)$ d'où si $\operatorname{Ker} f \cap \operatorname{Im} f = \{\overrightarrow{0}\}, \dim(\operatorname{Ker} f + \operatorname{Im} f) = \dim(\operatorname{Ker} f) + \dim(\operatorname{Im} f) \dim(\operatorname{Ker} f \cap \operatorname{Im} f) = \dim(E).$

17)
$$\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
.

18)
$$\begin{pmatrix} -2 & & & & & \\ & -1 & & & (0) & & \\ & & 0 & & & \\ & & 1 & & & \\ & & (0) & & \ddots & \\ & & & & & n-2 \end{pmatrix}.$$

19)
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 et $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.

$$\mathbf{20}) \left(\begin{array}{rrrr} 0 & -3 & 2 & 0 \\ -2 & -3 & 0 & 2 \\ 3 & 0 & 3 & -3 \\ 0 & 3 & -2 & 0 \end{array} \right).$$

21)
$$\mathcal{M}at(f) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

- **22)** $P^2 = P$ donc p est une projection sur Im $p = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} / x + y + z = 0 \right\}$ parallèlement à Ker $p = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} / y = z = 0 \right\}$.
- **23)** $S^2 = I_3$ donc s est une symétrie par rapport à $\operatorname{Ker}(s Id) = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \ / \ x + y + z = 0 \right\}$ parallèlement à $\operatorname{Ker}(s + Id) = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \ / \ y = z = 0 \right\}$.

24)
$$\mathcal{M}at_{\mathcal{B}',\mathcal{B}} Id = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \text{ et } \mathcal{M}at_{\mathcal{B},\mathcal{B}'} Id = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}.$$

25) On a
$$\overrightarrow{e_1}'$$
 $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\overrightarrow{e_2}'$ $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\overrightarrow{e_3}'$ $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ et $M' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

26)
$$P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 et $M^n = \begin{pmatrix} 1 & 2^n - 1 & 3^n - 2^n \\ 0 & 2^n & 3^n - 2^n \\ 0 & 0 & 3^n \end{pmatrix}$.

- **27**) $\operatorname{rg} M = 2$.
- **28)** Le rang de M_{λ} vaut 1 si $\lambda = -1$, 2 si $\lambda = 2$ et 3 sinon.