XV. Intégration

Exercice 1

Déterminer $\lim_{n\to+\infty}\sum_{k=0}^{k=n}\frac{1}{n+k}$ en étudiant les sommes de Riemann de la fonction $f:x\mapsto\frac{1}{1+x}$ sur l'intervalle [0;1].

Exercice 2

Montrer que $F: x \mapsto \ln|1+x|$ est une primitive de $f: x \mapsto \frac{1}{1+x}$ sur $]-\infty; -1[$ et sur $]-1; +\infty[$.

Exercice 3

Déterminer une primitive sur $[0; \frac{\pi}{2}[$ de la fonction tangente.

Exercice 4

Déterminer une primitive sur \mathbb{R} de la fonction $f: x \mapsto e^x \sin x$. (on pourra la chercher sous la forme $F: x \mapsto (\lambda \sin x + \mu \cos x)e^x$)

Exercice 5

Déterminer une primitive sur \mathbb{R} de la fonction $f: x \mapsto e^x(\sin x)^2$. (on pourra linéariser)

Exercice 6

Déterminer une primitive sur \mathbb{R} de la fonction $f: x \mapsto \frac{1+x}{1+x^2}$.

Exercice 7

On considère la fonction $f: x \mapsto \frac{1+x+x^2}{1+x+x^2+x^3}$, montrer qu'il existe trois réels a, b et c tels que $f(x) = \frac{ax+b}{1+x^2} + \frac{c}{1+x}$ pour tout $x \in \mathbb{R}$ et en déduire une primitive de f sur $]-\infty;-1[$ et sur $]-1;+\infty[$.

Exercice 8

Calculer
$$\int_0^{\frac{\pi}{3}} (\tan t)^2 dt$$
.

Exercice 9

Calculer
$$\int_0^3 |t^2 - 3t + 2| dt.$$

Exercice 10

Calculer
$$\int_0^1 (1+t)\sqrt{t} \, dt$$
.

Exercice 11

Calculer
$$\int_0^{\frac{\pi}{4}} \frac{t}{(\cos t)^2} dt$$
. (on pourra effectuer une intégration par parties)

Exercice 12

Calculer
$$\int_0^1 t^3 e^{t^2} dt$$
. (on pourra effectuer une intégration par parties)

Exercice 13

Déterminer une primitive sur $\mathbb R$ de la fonction arctangente. (on pourra effectuer une intégration par parties)

Exercice 14

Calculer
$$\int_{1}^{e} t(\ln t)^4 dt$$
. (on pourra effectuer des intégrations par parties successives)

Exercice 15

Calculer
$$\int_0^{\frac{\pi}{2}} (\sin t)^2 (\cos t)^3 dt$$
. (on pourra utiliser le changement de variable $x = \sin t$)

Exercice 16

Calculer
$$\int_0^{\frac{\pi}{2}} \frac{\mathrm{d}t}{1+\cos t}$$
. (on pourra utiliser le changement de variable $x=\tan\frac{t}{2}$)

Exercice 17

Exprimer
$$1 + \tan\left(\frac{\pi}{4} - x\right)$$
 en fonction de $\tan x$ et en déduire $I = \int_0^{\frac{\pi}{4}} \ln(1 + \tan t) dt$.

Exercice 18

Démontrer que $x - \frac{x^2}{2} \le \ln(1+x) \le x - \frac{x^2}{2} + \frac{x^3}{3}$ pour $x \in \mathbb{R}_+$ en utilisant la formule de Taylor-Lagrange avec reste intégral.

Exercice 19

Déterminer le développement limité à l'ordre n en x=0 de la fonction $x\mapsto \frac{1}{\sqrt{1-x}}$ en utilisant la formule de Taylor-Young.

Exercice 20

Déterminer un équivalent en 0 de la fonction $f: x \mapsto x(2 + \cos x) - 3\sin x$.

Exercice 21

Étudier la limite en 0 de la fonction $f: x \mapsto \frac{1 - \cos x}{1 - \sqrt{1 + x^2}}$.

Exercice 22

Déterminer le développement limité à l'ordre n en x=-1 de $x\mapsto 1+x+x^2+x^3$. (on pourra utiliser le changement de variable X=x+1)

Exercice 23

Déterminer le développement limité à l'ordre 3 en x = 1 de $x \mapsto \frac{1+x^3}{1+x+x^2}$. (on pourra utiliser le changement de variable X = x - 1)

Exercice 24

Étudier la limite en 1 de la fonction $f: x \mapsto \frac{\ln x}{1 - \sqrt{x}}$. (on pourra utiliser le changement de variable X = x - 1)

Exercice 25

Montrer que la courbe représentative \mathcal{C} de la fonction $f: x \mapsto x\sqrt{\frac{x+1}{x-1}}$ admet une asymptote oblique \mathcal{T} en $+\infty$ puis étudier les positions relatives de \mathcal{C} et \mathcal{T} au voisinage de $+\infty$. (on pourra utiliser le changement de variable $X = \frac{1}{x}$ et calculer un développement limité)

Exercice 26

Montrer que la fonction $f: x \mapsto \frac{1}{\sin x} - \frac{1}{x}$ se prolonge par continuité en 0 en une fonction dérivable en 0 et déterminer f(0) et f'(0).

Exercice 27

Déterminer le développement limité à l'ordre 3 en x=0 de la fonction $x\mapsto \sqrt{1+\sin x}$.

Exercice 28

Déterminer le développement limité à l'ordre 5 de la fonction arccos en 0. (on pourra procéder par intégration)

Réponses

- 1) ln 2.
- 2) Si x < -1 alors $F(x) = \ln(-1 x)$ d'où $F'(x) = \frac{-1}{-1 x} = f(x)$.
- 3) $x \mapsto -\ln(\cos x)$.
- 4) $F(x) = \frac{1}{2}(\sin x \cos x)e^x$.
- 5) $F(x) = \frac{1}{10}(5 \cos 2x 2\sin 2x)e^x$.
- 6) $F(x) = \arctan x + \frac{1}{2}\ln(1+x^2)$.
- 7) $F(x) = \frac{1}{4}\ln(1+x^2) + \frac{1}{2}\arctan x + \frac{1}{2}\ln|1+x|$.
- 8) $\sqrt{3} \frac{\pi}{3}$.
- 9) $\frac{11}{6}$.
- 10) $\frac{16}{15}$
- 11) $\frac{\pi}{4} \frac{1}{2} \ln 2$.
- 12) $\frac{1}{2}$, en remarquant que $t^3e^{t^2} = \frac{1}{2}t^2 \times 2te^{t^2}$.
- **13)** $x \mapsto x \arctan x \frac{1}{2} \ln(1 + x^2)$.
- 14) $\frac{e^2-3}{4}$ en remarquant que $I_n = \int_1^e t(\ln t)^n dt$ vérifie la relation de récurrence $I_n = \frac{1}{2}(e^2 nI_{n-1})$.
- 15) $\frac{2}{15}$.
- **16**) 1.
- 17) En posant $x = \frac{\pi}{4} t$ on obtient $I = \frac{1}{4}\pi \ln 2 I$ d'où $I = \frac{1}{8}\pi \ln 2$.
- **18)** On remarque que $\ln(1+x) x + \frac{x^2}{2} = \int_0^x \frac{(x-t)^2}{2} \ln^{(3)}(1+t) dt \ge 0$ et que $\ln(1+x) x + \frac{x^2}{2} \frac{x^3}{3} = 1$ $\int_{a}^{x} \frac{(x-t)^3}{6} \ln^{(4)}(1+t) dt \leq 0.$
- 19) $\frac{1}{\sqrt{1-x}} = 1 + \sum_{k=0}^{k=n} \frac{1 \times 3 \times 5 \times \dots \times (2k-1)}{k! \ 2^k} x^k + o(x^n).$
- **20)** $f(x) \sim \frac{x^5}{60}$
- **21)** $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = -1.$
- **22)** $2(x+1) 2(x+1)^2 + (x+1)^3$ si $n \ge 3$.
- **23)** $\frac{2}{3} + \frac{1}{3}(x-1) + \frac{4}{9}(x-1)^2 \frac{2}{9}(x-1)^3 + o((x-1)^3).$ **24)** $\lim_{\substack{x \to 1 \\ x > 1}} f(x) = \lim_{\substack{x \to 1 \\ x < 1}} f(x) = -2.$
- **25)** On montre que $f(x) = \frac{1}{Y} + 1 + \frac{1}{2}X + o(X) = x + 1 + \frac{1}{2x} + o\left(\frac{1}{x}\right)$.
- **26)** $\frac{1}{\sin x} \frac{1}{x} = \frac{1}{6}x + o(x)$ donc f(0) = 0 et $f'(0) = \frac{1}{6}$.
- **27)** $\sqrt{1+\sin x} = 1 + \frac{1}{2}x \frac{1}{8}x^2 \frac{1}{48}x^3 + o(x^3).$
- **28)** $\arccos x = \frac{\pi}{2} x \frac{x^3}{6} \frac{3x^5}{40} + o(x^6).$