I. Pratique calculatoire

1 Inéquations

Propriété 1. On ne change pas les solutions d'une inéquation :

- en additionnant ou en soustrayant un même nombre aux deux membres de l'inéquation,
- en multipliant ou en divisant par un même nombre **strictement positif** les deux membres de l'inéquation,
- en multipliant ou en divisant par un même nombre strictement négatif les deux membres de l'inéquation à condition de **changer l'ordre** de l'inéquation.

Exemple 1. Résolution de l'inéquation (E) : $2x + 3 \le 5x - 4$

$$2x + 3 - 3 \leq 5x - 4 - 3$$

$$2x \leq 5x - 7$$

$$2x - 5x \leq 5x - 7 - 5x$$

$$-3x \leq -7$$

$$\frac{-3x}{-3} \geqslant \frac{-7}{-3}$$

$$x \geqslant \frac{7}{3}$$

 $L'ensemble \ des \ solutions \ de \ l'in\'equation \ (E) \ est \ l'ensemble \ S = \left[\frac{7}{3}; +\infty\right[.$

Exercice 1. Résoudre l'inéquation 3x + 2 > 5x - 1.

Exercice 2. Résoudre les inéquations suivantes :

$$(E_1): 1+x \leq x$$

 $(E_2): (1+x)^2 \leq x^2$

Que peut-on en conclure?

Définition 1. Tableau de signes d'une fonction

Soit f une fonction de la variable x, on appelle tableau de signes de f un tableau donnant le signe de f(x) en fonction de x ainsi que les valeurs de x pour lesquelles f(x) = 0.

Exemple 2. tableau de signes de f(x) = (3x - 1)(x - 4):

$\underline{}$	$-\infty$		$\frac{1}{3}$		4		$+\infty$
3x-1		_	0	+		+	
x-4		_		_	0	+	
(3x-1)(x-4)		+	0	_	0	+	

Exercice 3. Résoudre l'inéquation (E): $\frac{3x-5}{2-x} \le 0$ au moyen d'un tableau de signes.

Définition 2. Valeur absolue d'un nombre réel

On appelle valeur absolue d'un réel $x: |x| = \begin{cases} x & si \ x \ge 0 \\ -x & si \ x \le 0 \end{cases}$

Propriété 2. Pour tous réels x et y on a :

- $\bullet \quad |x| = \sqrt{x^2}$
- $\bullet \quad |xy| = |x| \times |y|$

Exercice 4. On pose x = 3 et y = -2, calculer |x + y| et |x| + |y|.

Propriété 3. Inégalité triangulaire

Pour tous réels x et y, on a $|x+y| \le |x| + |y|$.

Exercice 5. Représenter graphiquement la fonction $f: x \mapsto |1-2x|$.

Exercice 6. Résoudre les inéquations suivantes :

$$(E_1)$$
 : $3x - 2$ > 5
 (E_2) : $3x - 2$ < -5

En déduire l'ensemble des solutions de l'inéquation (E) : |3x-2| > 5.

2 Équation du second degré

Théorème 1. L'équation $ax^2 + bx + c = 0$ avec a, b, c trois <u>réels et $a \neq 0$ admet :</u>

- Si $\Delta = b^2 4ac > 0$, deux solutions réelles distinctes $x_1 = \frac{-b \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$ de plus $ax^2 + bx + c = a(x x_1)(x x_2)$.
- Si $\Delta = 0$, une solution réelle double $x_0 = \frac{-b}{2a}$ de plus $ax^2 + bx + c = a(x x_0)^2$.
- $Si \Delta = b^2 4ac < 0$, aucune solution réelle.

Exercice 7. Factoriser le trinôme du second degré $3x^2 + 3x - 6$ puis en déduire son tableau de signes.

Propriété 4. Signe d'un trinôme du second degré

Le signe d'un trinôme du second degré $ax^2 + bx + c$ avec a, b, c trois réels et $a \neq 0$ est :

- celui de a quand $\Delta \leqslant 0$,
- celui de a à l'extérieur des racines (et le signe contraire à l'intérieur des racines) quand $\Delta>0$.

Exercice 8. Déterminer le tableau de signes du trinôme du second degré $4x^2 + 2x - 1$.

3 Calcul de limites

Propriété 5. Opérations sur les limites

$\lim_{x \to u(x)$	l	l	l	$+\infty$	$-\infty$	$+\infty$
$\lim_{x \to 0} v(x)$	l'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim_{x \to \infty} [u(x) + v(x)]$	l + l'	$+\infty$	$-\infty$	$+\infty$	$-\infty$?

$\lim_{x \to u(x)$	l	$l \neq 0$	0	∞
$\lim_{x \to 0} v(x)$	l'	∞	∞	∞
$\lim_{x \to \infty} [u(x) \times v(x)]$	$l \times l'$	∞	?	∞

Le signe de la limite s'obtenant au moyen de la règle des signes pour la multiplication.

$\lim_{x \to} u(x)$	l	$l \neq 0$	∞	l	∞	0
$\lim_{x \to 0} v(x)$	$l' \neq 0$	0	l'	∞	∞	0
$\lim_{x \to 0} \frac{u(x)}{v(x)}$	$\frac{l}{l'}$	∞	∞	0	?	?

Le signe de la limite s'obtenant au moyen de la règle des signes pour la division.

Exercice 9. Calculer les limites en 1 et en $+\infty$ de la fonction $f: x \mapsto \frac{x^2+1}{1-x}$.

Exercice 10. Calculer $\lim_{\substack{x\to 0\\x<0}} \sqrt{1-\frac{1}{x}}$.

Exercice 11. Déterminer $\lim_{x\to +\infty} \frac{\sin x}{x}$. (on pourra procéder par encadrement)

Propriété 6. Croissances comparées

$$\bullet \quad \lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\bullet \left| \lim_{x \to +\infty} \frac{x}{e^x} = 0 \right|$$

Corollaire 1.

$$\bullet \left| \lim_{x \to -\infty} x e^x = 0 \right|$$

Exercice 12. Déterminer $\lim_{x \to +\infty} \frac{\ln x}{x^2 + 1}$.

Exercice 13. Déterminer $\lim_{\substack{x\to 0\\x>0}} x^2 \ln(2x)$.

Calcul de dérivées et primitives

Théorème 2. Dérivées des fonctions usuelles

f(x)	ensemble de définition	intervalle(s) de dérivabilité	f'(x)
Cte	\mathbb{R}	\mathbb{R}	0
ax + b	\mathbb{R}	\mathbb{R}	a
x^2	\mathbb{R}	\mathbb{R}	2x
x^3	\mathbb{R}	\mathbb{R}	$3x^2$
x^n , $n \in \mathbb{N}^*$	\mathbb{R}	\mathbb{R}	nx^{n-1}
$\frac{1}{x}$	\mathbb{R}^*	\mathbb{R}_{-}^{*} et \mathbb{R}_{+}^{*}	$-\frac{1}{x^2}$
$\frac{1}{x^n} = x^{-n} , n \in \mathbb{N}^*$	\mathbb{R}^*	\mathbb{R}_{-}^{*} et \mathbb{R}_{+}^{*}	$-\frac{n}{x^{n+1}} = -nx^{-n-1}$
$\sqrt{x} = x^{\frac{1}{2}}$	\mathbb{R}_+	\mathbb{R}_+^*	$\frac{1}{2\sqrt{x}} = \frac{1}{2}x^{-\frac{1}{2}}$
$\sin x$	$\mathbb R$	\mathbb{R}	$\cos x$
$\cos x$	$\mathbb R$	\mathbb{R}	$-\sin x$
e^x	\mathbb{R}	\mathbb{R}	e^x
$\ln x$	\mathbb{R}_+^*	\mathbb{R}_+^*	$\frac{1}{x}$

Exercice 14. Calculer la dérivée de la fonction $f: x \mapsto \frac{1}{x^5}$.

Théorème 3. Dérivées et opérations

- Si u et v sont deux fonctions dérivables alors la fonction u+v est dérivable et u+v'=u'+v'.

 Si u est une fonction dérivable et k un nombre réel alors la fonction ku est dérivable et u+v'=u'+v'.
- Si u et v sont deux fonctions dérivables alors la fonction uv est dérivable et (uv)' = u'v + uv'
- Si u est une fonction dérivable ne s'annulant pas alors la fonction $\frac{1}{u}$ est dérivable et $\left| \left(\frac{1}{u} \right)' \right| = -$
- Si u et v sont deux fonctions dérivables avec v ne s'annulant pas alors la fonction $\frac{u}{v}$ est dérivable

Exercice 15. Calculer la dérivée de la fonction $f: x \mapsto 5e^x - 4x^3 + 2$.

Exercice 16. Calculer les dérivées des fonctions $f: x \mapsto \frac{x^2 - 1}{x^2 + 1}$ et $g: x \mapsto \frac{3x^2 + 1}{x^2 + 1}$.

Théorème 4. Dérivée d'une composée

- Si u est une fonction dérivable et n un entier positif alors la fonction u^n est dérivable et :

$$(u^n)' = nu^{n-1} \times u'$$

- $Si\ u$ est une fonction dérivable alors la fonction e^u est dérivable et :

$$(e^u)' = e^u \times u'$$

- Si u est une fonction dérivable alors la fonction sin u est dérivable et :

$$(\sin u)' = (\cos u) \times u'$$

- Si u est une fonction dérivable alors la fonction cos u est dérivable et :

$$(\cos u)' = -(\sin u) \times u'$$

- Si u est une fonction dérivable strictement positive alors la fonction \sqrt{u} est dérivable et :

$$(\sqrt{u})' = \frac{1}{2\sqrt{u}} \times u'$$

- Si u est une fonction dérivable strictement positive alors la fonction $\ln u$ est dérivable et :

Exercice 17. Calculer les dérivées des fonctions $f: x \mapsto (x^2 - 1)^5$ et $g: x \mapsto e^{x^2 - 1}$.

Exercice 18. Calculer la dérivée de la fonction $f: x \mapsto (2x^2 - 2x + 1)e^{2x}$.

Définition 3. Soit f une fonction, on appelle **primitive** de la fonction f toute fonction F dérivable telle que F' = f.

Exercice 19. Déterminer une primitive de la fonction $f: x \mapsto 6x^2 - 5x + 7$.

Exercice 20. Déterminer une primitive sur $]0; +\infty[$ de la fonction $x \mapsto \frac{1}{x^3}$. (on pourra chercher F sous la forme $F(x) = C \times \frac{1}{x^2}$)

5 Sommes et produits

Propriété 7. Soit
$$n \in \mathbb{N}^*$$
, alors $1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}$

Exercice 21. Calculer $1 + 2 + 3 + \cdots + 100$.

Propriété 8. Soit $n \in \mathbb{N}$ et q un nombre réel différent de 1, alors $q^0 + q^1 + q^2 + \dots + q^n = \frac{1 - q^{n+1}}{1 - q}$

Exercice 22. Calculer $2^1 + 2^2 + 2^3 + \cdots + 2^9$.

Définition 4. Symbole factorielle

Étant donné un entier naturel n on définit sa factorielle n! par :

$$\begin{array}{rcl}
0! & = & 1 \\
n! & = & 1 \times 2 \times 3 \times \dots \times n
\end{array}$$

Exercice 23. Calculer $\frac{6!}{(3!)^2}$.

Propriété 9. Identités remarquables

Si a et b sont deux nombres réels (ou complexes), alors :

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$a^2 - b^2 = (a - b)(a + b)$$

Exercice 24. Développer et réduire $(a + b)^3$ et $(a - b)^3$. (on ordonnera suivant les puissances croissantes de b)

Exercice 25. Développer et réduire $(a + b)^4$ et $(a - b)^4$. (on ordonnera suivant les puissances croissantes de b)

Propriété 10. Triangle de Pascal

Les coefficients du développement de $(a+b)^n$ dans l'ordre des puissances croissantes de b s'obtiennent à l'aide du tableau suivant où les lignes se commencent et se terminent par 1 et chaque coefficient s'obtient au moyen d'une somme de coefficients de la ligne précédente :

Exercice 26. Compléter le triangle de Pascal afin d'obtenir le développement de $(a + b)^7$.

Exercices supplémentaires

Exercice 27

Résoudre l'inéquation $-7x + 3 \le 2(x - 1)$.

Exercice 28

Déterminer le tableau de signes de $f(x) = \frac{(1-2x)(3x-2)}{(x+5)}$.

Exercice 29

Résoudre l'inéquation $\frac{1-3x}{x+2} < 0$.

Exercice 30

Résoudre l'inéquation $|2x - 3| \leq 5$.

Exercice 31 (\star)

Résoudre l'inéquation $|3x - 5| \le 2x + 1$.

Exercice 32 $(\star\star)$

Résoudre l'inéquation $|x+1|+|x-1| \le x+2$.

Exercice 33

Résoudre l'équation $-3x^2 - x + 2 = 0$.

Exercice 34 (*)

Résoudre l'équation $5x^2 + \frac{2}{3}x - 1 = 0$.

Exercice 35

Résoudre l'inéquation $x^2 < x + 2$.

Exercice 36

Déterminer l'ensemble de définition de la fonction $f: x \mapsto \ln(x^2 - x)$.

Exercice 37

Résoudre l'inéquation $\frac{x^2 + x}{x^2 - 2} \le 0$.

Exercice 38 (\star)

Déterminer la valeur de m pour que l'équation $-3x^2+6x-4m=0$ admette une unique solution et la calculer dans ce cas.

Exercice 39 (\star)

Résoudre l'inéquation
$$\frac{x^2 - 2x - 3}{x^2 + x - 2} \geqslant 0$$
.

Exercice 40 (**)

Résoudre l'inéquation
$$\frac{x-1}{2x} > \frac{x+5}{2-x}$$
.

Exercice 41 (**)

Résoudre le système
$$\left\{ \begin{array}{lll} \frac{1}{x} + \frac{1}{y} & = & \frac{4}{15} \\ xy & = & 60 \end{array} \right. .$$

Exercice 42

Déterminer
$$\lim_{\substack{x\to 0\\x<0}} \frac{\sqrt{x+1}}{\sin x}$$
, $\lim_{x\to 1} e^{-(\ln x)^2}$, $\lim_{x\to -\infty} \ln(\sqrt{x^2+1}-x)$ et $\lim_{x\to 0} x \sin\left(\frac{1}{x}\right)$.

Exercice 43

Déterminer
$$\lim_{x \to -\infty} \frac{2x^2 - 1}{3x + 1}$$
 et $\lim_{x \to +\infty} \frac{1}{x - \sqrt{x}}$.

Exercice 44 (\star)

Déterminer
$$\lim_{x\to 1} \frac{x^2 - 3x + 2}{x^2 - 1}$$
.

Exercice 45 (\star)

Déterminer
$$\lim_{x \to +\infty} (\sqrt{x^2 + 1} - \sqrt{x^2 + 2}).$$

Exercice 46 (\star)

Déterminer
$$\lim_{x\to 0} xe^{-\frac{1}{x^2}}$$
 et $\lim_{x\to +\infty} \frac{\ln(x^2+1)}{x}$.

Exercice 47

Déterminer les dérivées des fonctions
$$f_1: x \mapsto \frac{x+2}{x^2+1}$$
, $f_2: x \mapsto (\sin x - \cos x)e^x$ et $f_3: x \mapsto \frac{\sin x}{\ln x}$.

Exercice 48 (*)

Déterminer les dérivées des fonctions $f_1: x \mapsto xe^{x^2-1}$, $f_2: x \mapsto x\sqrt{x^2+2}$ et $f_3: x \mapsto x(x^2+1)^7$.

Exercice 49 $(\star\star)$

Déterminer la dérivée troisième f''' de la fonction $f: x \mapsto (x^2 - 3x + 3)e^{2x}$.

Exercice 50

Déterminer une primitive de la fonction $f: x \mapsto 2x^2 - x + 7$.

Exercice 51

Calculer
$$\int_0^{\frac{\pi}{2}} \sin x \, \mathrm{d}x$$
.

Exercice 52

Déterminer une primitive des fonctions $f_1: x \mapsto x^2(x^3+1)^3$ et $f_2: x \mapsto \frac{x}{x^2+1}$.

Exercice 53 (\star)

Déterminer une primitive des fonctions $f_1: x \mapsto x\sqrt{x}$, $f_2: x \mapsto \sin x \cos x$ et $f_3: x \mapsto \frac{x}{(x^2+3)^2}$.

Exercice 54 (**)

Déterminer une primitive de la fonction ln.

Exercice 55

Calculer
$$10 + 11 + 12 + 13 + \cdots + 110$$
.

Exercice 56 (\star)

Calculer
$$1 + 3 + 5 + 7 + \cdots + 1001$$
.

Exercice 57

Calculer
$$3^0 + 3^2 + 3^4 + 3^6 + \dots + 3^{100}$$
.

Exercice 58

Calculer
$$\frac{15!}{7! \ 9!}$$
.

Exercice 59 (\star)

Simplifier
$$\frac{(2n+1)!}{(2n-1)!} - 2\frac{(n+1)!}{(n-1)!}$$
 pour n entier strictement positif.

Exercice 60

Développer
$$(a-b)^6$$
.

Exercice 61

Développer
$$(x-2)^5$$
.

Exercice 62 (\star)

Factoriser
$$(1+x^3)^5 - (1-x^3)^5$$
.

Réponses

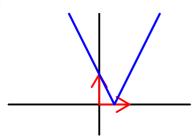
1)
$$S =]-\infty; -\frac{2}{3}[.$$

2)
$$S_1 = \emptyset$$
 et $S_2 =]-\infty; \frac{1}{2}]$, élever au carré modifie l'ensemble des solutions.

3)
$$S =]-\infty; \frac{5}{3}] \cup]2; +\infty[.$$

4)
$$|3 + (-2)| = |1| = 1$$
 et $|3| + |-2| = 3 + 2 = 5$.

5)



6)
$$S_1 =]\frac{7}{3}; +\infty[$$
 et $S_2 =]-\infty; -1[$ donc $S =]-\infty; -1[\cup]\frac{7}{3}; +\infty[$.

7)
$$3x^2 + 3x - 6 = 3(x - 1)(x + 2)$$

8)

9)
$$\lim_{\substack{x \to 1 \\ x < 1}} \frac{x^2 + 1}{1 - x} = +\infty$$
 et $\lim_{\substack{x \to 1 \\ x > 1}} \frac{x^2 + 1}{1 - x} = -\infty$.

10)
$$\lim_{\substack{x\to 0\\x<0}} \sqrt{1-\frac{1}{x}} = +\infty.$$

11)
$$\lim_{x \to +\infty} \frac{\sin x}{x} = 0$$
 car $-\frac{1}{x} \leqslant \frac{\sin x}{x} \leqslant \frac{1}{x}$ pour $x > 0$.

12)
$$\lim_{x \to +\infty} \frac{\ln x}{x^2 + 1} = 0$$
 $\operatorname{car} \frac{\ln x}{x^2 + 1} = \frac{\ln x}{x} \times \frac{1}{1 + \frac{1}{x}}$

13)
$$\lim_{\substack{x \to 0 \\ x > 0}} x^2 \ln(2x) = 0$$
 car $x^2 \ln(2x) = x^2 \ln 2 + x \times x \ln x$.

14)
$$f'(x) = -\frac{5}{x^6}$$

15)
$$f'(x) = 5e^x - 12x^2$$

16)
$$f'(x) = g'(x) = \frac{4x}{(x^2+1)^2}$$
.

17)
$$f'(x) = 10x(x^2 - 1)^4$$
 et $g'(x) = 2xe^{x^2 - 1}$.

18)
$$f'(x) = 4x^2e^{2x}$$

19)
$$F(x) = 2x^3 - \frac{5}{2}x^2 + 7x$$
.

20)
$$F(x) = -\frac{1}{2x^2}$$

21)
$$1 + 2 + 3 + \dots + 100 = \frac{100 * (100 + 1)}{2} = 5050.$$

22)
$$2^1 + 2^2 + 2^3 + \dots + 2^9 = \frac{1 - 2^{10}}{1 - 2} - 2^0 = 2^{10} - 2$$
.

23)
$$\frac{6!}{(3!)^2} = \frac{1 \times 2 \times 3 \times 4 \times 5 \times 6}{1 \times 2 \times 3 \times 1 \times 2 \times 3} = \frac{4 \times 5}{1} = 20.$$

24)
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$
 et $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$.

25)
$$(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$
 et $(a-b)^4 = a^4 - 4a^3b + 6a^2b^2 - 4ab^3 + b^4$.

26)
$$(a+b)^7 = a^7 + 7a^6b + 21a^5b^2 + 35a^4b^3 + 35a^3b^4 + 21a^2b^5 + 7ab^6 + b^7$$

27) L'ensemble des solutions est $\left[\frac{5}{9}; +\infty\right[$.

28)

x	$-\infty$		-5		$\frac{1}{2}$		$\frac{2}{3}$		$+\infty$
1-2x		+		+	0	_		_	
3x-2		_		_		_	0	+	
x+5		_	0	+		+		+	
$\frac{(1-2x)(3x-2)}{(x+5)}$		+		_	0	+	0	_	

- **29)** L'ensemble des solutions est $]-\infty;-2[\cup]\frac{1}{3};+\infty[$.
- **30)** L'ensemble des solutions est l'intervalle [-1; 4].
- **31)** L'ensemble des solutions est l'intervalle $\left[\frac{4}{5}; 6\right]$.
- **32)** L'ensemble des solutions est l'intervalle [0, 2].
- **33)** Les solutions sont -1 et $\frac{2}{3}$.
- **34)** Les solutions sont $\frac{-1-\sqrt{46}}{15}$ et $\frac{-1+\sqrt{46}}{15}$.
- **35)** L'ensemble des solutions est l'intervalle]-1;2[.
- **36)** La fonction f est définie sur $]-\infty;0[\cup]1;+\infty[$.
- **37)** L'ensemble des solutions est $]-\sqrt{2};-1]\cup[0;\sqrt{2}[$.
- **38)** Pour $m = \frac{3}{4}$, l'équation admet pour unique solution x = 1.
- **39)** L'ensemble des solutions est] $-\infty$; $-2[\cup[-1;1[\cup[3;+\infty[$.
- **40)** L'ensemble des solutions est $]-\infty;-2[\cup]-\frac{1}{3};0[\cup]2;+\infty[.$
- **41)** Les solutions du système sont les couples $(x_1 = 6; y_1 = 10)$ et $(x_2 = 10; y_2 = 6)$.

42)
$$\lim_{\substack{x \to 0 \\ x < 0}} \frac{\sqrt{x+1}}{\sin x} = -\infty$$
, $\lim_{x \to 1} e^{-(\ln x)^2} = 1$, $\lim_{x \to -\infty} \ln(\sqrt{x^2+1} - x) = +\infty$ et $\lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0$.

43)
$$\lim_{x \to -\infty} \frac{2x^2 - 1}{3x + 1} = -\infty \text{ et } \lim_{x \to +\infty} \frac{1}{x - \sqrt{x}} = 0.$$

44)
$$\lim_{x \to 1} \frac{x^2 - 3x + 2}{x^2 - 1} = -\frac{1}{2}.$$

45)
$$\lim_{x \to +\infty} (\sqrt{x^2 + 1} - \sqrt{x^2 + 2}) = 0.$$

46)
$$\lim_{x \to 0} x e^{-\frac{1}{x^2}} = 0$$
 et $\lim_{x \to +\infty} \frac{\ln(x^2 + 1)}{x} = \lim_{x \to +\infty} \left(2 \frac{\ln x}{x} + \frac{\ln\left(1 + \frac{1}{x^2}\right)}{x} \right) = 0.$

47)
$$f_1'(x) = \frac{-x^2 - 4x + 1}{(x^2 + 1)^2}$$
, $f_2'(x) = 2e^x \sin x$ et $f_3'(x) = \frac{x \cos x \ln x - \sin x}{x(\ln x)^2}$.

48)
$$f_1'(x) = (2x^2 + 1)e^{x^2 - 1}, f_2'(x) = \frac{2(x^2 + 1)}{\sqrt{x^2 + 2}} \text{ et } f_3'(x) = (15x^2 + 1)(x^2 + 1)^6.$$

49)
$$f'''(x) = 8x^2e^{2x}$$
.

50)
$$f(x) = \frac{2}{3}x^3 - \frac{1}{2}x^2 + 7x$$
.

51)
$$\int_0^{\frac{\pi}{2}} \sin x \, \mathrm{d}x = 1.$$

52)
$$F_1(x) = \frac{1}{12}(x^3+1)^4$$
 et $F_2(x) = \frac{1}{2}\ln(x^2+1)$.

53)
$$F_1(x) = \frac{2}{5}x^2\sqrt{x}$$
, $F_2(x) = \frac{1}{2}(\sin x)^2$ et $F_3(x) = -\frac{1}{2(x^2+1)}$.

54)
$$F(x) = x \ln x - x$$
.

55)
$$10 + 11 + 12 + 13 + \dots + 110 = \frac{110 \times 111}{2} - \frac{9 \times 10}{2} = 6060.$$

56)
$$1 + 3 + 5 + 7 + \dots + 1001 = 1 + (1 + 2 \times 1) + (1 + 2 \times 2) + (1 + 2 \times 3) + \dots + (1 + 2 \times 500) = 501 + 2(1 + 2 + 3 + \dots + 500) = 501^2 = 251001.$$

57)
$$3^0 + 3^2 + 3^4 + 3^6 + \dots + 3^{100} = 9^0 + 9^1 + 9^2 + \dots + 9^{50} = \frac{1}{8}(9^{51} - 1).$$

58)
$$\frac{15!}{7! \ 9!} = 715.$$

59)
$$\frac{(2n+1)!}{(2n-1)!} - 2\frac{(n+1)!}{(n-1)!} = 2n^2.$$

60)
$$(a+b)^6 = a^6 - 6a^5b + 15a^4b^2 - 20a^3b^3 + 15a^2b^4 - 6ab^5 + b^6$$
.

61)
$$(x-2)^5 = x^5 - 10x^4 + 40x^3 - 80x^2 + 80x - 32.$$

62)
$$(1+x^3)^5 - (1-x^3)^5 = 2x^3(5+10x^6+x^{12}).$$