V. Équations différentielles

1 Primitive d'une fonction

Définition 1. On appelle **primitive** d'une fonction f une solution de l'équation différentielle y' = f.

Exercice 1. Déterminer une solution de l'équation différentielle $y'(t) = 2t^3 - 2t + 5$ d'inconnue y de la variable t.

Remarque 1. On notera parfois abusivement $y' = 2t^3 - 2t + 5$ au lieu de $y'(t) = 2t^3 - 2t + 5$.

Lorsque nous aurons défini la notion de *continuité* et développé la théorie de l'*intégration*, nous pourrons démontrer le théorème suivant :

Théorème 1. Toute fonction f continue admet des primitives, si F_1 et F_2 sont deux primitives de la fonction f alors il existe une constante $k \in \mathbb{R}$ telle que $F_2 = F_1 + k$.

Exercice 2. Déterminer les primitives sur \mathbb{R} de la fonction f définie par $f(t) = \frac{1}{t^2 + 1}$.

Exercice 3. Déterminer les primitives sur $]0; +\infty[$ de la fonction f définie par $f(t) = t\sqrt{t}$. (on pourra utiliser les fonctions puissances)

Exercice 4. Déterminer les primitives sur \mathbb{R} de la fonction f définie par $f(t) = \frac{t}{t^2 + 1}$. En déduire que la fonction f admet une unique primitive F sur \mathbb{R} telle que F(1) = 1. Exprimer F(t).

Exercice 5. Dériver la fonction $F: t \mapsto (a+bt)e^t$. Montrer qu'il existe des valeurs de a et b telles que $F'(t) = te^t$. En déduire les primitives sur \mathbb{R} de la fonction f définie par $f(t) = te^t$.

Exercice 6. Dériver la fonction $F: t \mapsto (a\cos t + b\sin t)e^t$. Montrer qu'il existe des valeurs de a et b telles que $F'(t) = (\sin t)e^t$. En déduire les primitives sur $\mathbb R$ de la fonction f définie par $f(t) = (\sin t)e^t$.

2 Équations linéaires du premier ordre

Rappelons tout d'abord que nous avons défini la fonction exponentielle à partir d'une équation différentielle du premier ordre :

Définition 2. L'équation différentielle y'=y avec la condition initiale y(0)=1 admet une unique solution sur \mathbb{R} , on l'appelle fonction exponentielle et on la note $t\mapsto \exp(t)$ ou $t\mapsto e^t$ avec $e=\exp(1)$.

La fonction exponentielle va donc jouer un rôle fondamental dans la résolution des équations différentielles.

2.1 Équations linéaires du premier ordre sans second membre

Théorème 2. On considère une fonction a continue sur un intervalle I à valeurs dans \mathbb{R} ou \mathbb{C} , alors l'équation différentielle y' + a(t)y = 0 admet pour solutions les fonctions y définies par $y(t) = \lambda e^{-A(t)}$ où A est une primitive de a sur I et λ un nombre réel ou complexe.

Exercice 7. Résoudre les équations différentielles suivantes sur \mathbb{R} :

- y' 2y = 0
- y' + (1+it)y = 0
- $(t^2+1)y'+y=0$

Propriété 1. On considère une fonction a continue sur un intervalle I à valeurs dans \mathbb{R} ou \mathbb{C} , alors l'équation différentielle y' + a(t)y = 0 avec la condition initiale $y(t_0) = \alpha$ admet une unique solution.

Exercice 8. Résoudre l'équation différentielle $y' - \sqrt{t}y = 0$ sur $[0; +\infty[$ avec la condition initiale y(1) = e.

Exercice 9. Résoudre l'équation différentielle y' = 0 sur \mathbb{R} avec la condition initiale y'(0) = -1.

2.2 Équations linéaires du premier ordre avec second membre

La première méthode de résolution appelée *méthode de variation de la constante* consiste à chercher une solution de l'équation avec second membre sous une forme modifiée de la solution de l'équation sans second membre en remplaçant la constante multiplicative par une fonction :

Propriété 2. On considère deux fonctions a et b continues sur un intervalle I à valeurs dans \mathbb{R} ou \mathbb{C} , alors l'équation différentielle y' + a(t)y = b(t) admet pour solutions les fonctions y définies par $y(t) = f(t)e^{-A(t)}$ où A est une primitive de a et f une primitive de la fonction be^A .

Remarque 2. La formule $f' = be^A$ n'est pas à connaître, en pratique on procède de la façon suivante :

- On cherche la solution générale y_H de l'équation sans second membre associée.
- On remplace la constante de y_H par une fonction f(t) afin d'obtenir la forme de la solution y de l'équation avec second membre.
- On dérive la forme précédente.
- On remplace y et y' dans l'équation différentielle, on constate que f(t) disparaît et on obtient f'(t).
- On en déduit f puis y.

Exercice 10. Résoudre l'équation différentielle $(E): y' + \frac{1}{t}y = t$ sur l'intervalle $]0; +\infty[$ en utilisant la méthode de variation de la constante.

La seconde méthode de résolution appelée *méthode de la solution particulière* consiste à chercher une solution particulière de l'équation avec second membre ce qui permet ensuite de se ramener à une équation sans second membre:

Théorème 3. On considère deux fonctions a et b continues sur un intervalle I à valeurs dans \mathbb{R} ou \mathbb{C} , alors l'équation différentielle y'+a(t)y=b(t) admet pour solutions les fonctions y définies par $y(t)=\tilde{y}(t)+y_H(t)$ où \tilde{y} est une solution particulière de l'équation différentielle et y_H la solution générale de l'équation différentielle sans second membre associée.

Exercice 11. On considère l'équation différentielle $(E): y' + \frac{1}{t}y = t$ sur l'intervalle $]0; +\infty[$.

- Déterminer une solution particulière de l'équation différentielle (E) sous la forme $\tilde{y}(t) = mt^2$.
- En déduire les solutions de l'équation différentielle (E).

Propriété 3. On considère deux fonctions a et b continues sur un intervalle I à valeurs dans \mathbb{R} ou \mathbb{C} , alors l'équation différentielle y' + a(t)y = b(t) avec la condition initiale $y(t_0) = \alpha$ admet une unique solution.

Exercice 12. On considère l'équation différentielle $(E): y' + y = e^t$ sur l'intervalle $]0; +\infty[$.

- Déterminer une solution particulière de l'équation différentielle (E) sous la forme $\tilde{y}(t) = me^t$.
- En déduire les solutions de l'équation différentielle (E).
- Résoudre l'équation différentielle $y' + y = e^t$ avec la condition initiale y(0) = 1.

Le principe de superposition peut être utile lors de la recherche d'une solution particulière :

Propriété 4. On considère trois fonctions a, b_1 et b_2 continues sur un intervalle I à valeurs dans \mathbb{R} ou \mathbb{C} . Si y_1 est une solution de l'équation différentielle $(E_1): y'+ay=b_1$ et y_2 une solution de l'équation différentielle $(E_2): y'+ay=b_2 \ alors \ y_1+y_2 \ est \ une \ solution \ de \ l'équation \ différentielle (E): y'+ay=b_1+b_2.$

Exercice 13. On considère l'équation différentielle $(E): y'-y=2\cos(t)$ sur \mathbb{R} .

- Déterminer une solution particulière de l'équation différentielle $y'-y=e^{it}$ sous la forme $\tilde{y}_1(t)=me^{it}$.
- Déterminer une solution particulière de l'équation différentielle $y'-y=e^{-it}$ sous la forme $\tilde{y}_2(t)=me^{-it}$.
- En déduire une solution particulière \tilde{y} de l'équation différentielle (E).
- Résoudre l'équation différentielle (E).

Équations linéaires du second ordre à coefficients constants 3

Equations linéaires du second ordre à coefficients constants sans second membre

On considère trois nombres a, b et c réels ou complexes avec $a \neq 0$ et on note $\Delta = b^2 - 4ac$, alors l'équation différentielle ay'' + by' + cy = 0 admet pour solutions

- les fonctions y définies par :
 Si Δ ≠ 0, y(t) = λe^{r1t} + μe^{r2t} avec λ et μ des nombres réels ou complexes et r₁, r₂ les solutions de l'équation ar² + br + c = 0.
 Si Δ = 0, y(t) = (λ + μt)e^{r0t} avec λ et μ des nombres réels ou complexes et r₀ la
- solution double de l'équation $ar^2 + br + c = 0$.

Définition 3. L'équation du second degré associée à une équation différentielle linéaire du second ordre à coefficients constants est appelée équation caractéristique.

Exercice 14. Résoudre les équations différentielles suivantes :

- y'' 3y' + 2y = 0
- y'' + 2y' + y = 0
- y'' + 2iy' 2y = 0

Propriété 5. On considère trois nombres a, b et c réels ou complexes avec $a \neq 0$, alors l'équation différentielle ay'' + by' + c = 0 avec la condition initiale $y(t_0) = \alpha$ et $y'(t_0) = \beta$ admet une unique solution.

Exercice 15. Résoudre l'équation différentielle y'' - 5y' + 6y = 0 avec la condition initiale y(0) = 5 et y'(0) = 12.

Théorème 5.

On considère trois nombres a, b et c réels avec $a \neq 0$ et on note $\Delta = b^2 - 4ac$, alors l'équation différentielle ay'' + by' + cy = 0 admet pour solutions à valeurs réelles les

- fonctions y définies par :

 $Si \Delta = 0$, $y(t) = (\lambda t + \mu)e^{r_0t}$ avec λ et μ des nombres réels et r_0 la solution double de l'équation $ar^2 + br + c = 0$.

 $Si \Delta > 0$, $y(t) = \lambda e^{r_1t} + \mu e^{r_2t}$ avec λ et μ des nombres réels et r_1 , r_2 les solutions de l'équation $ar^2 + br + c = 0$.

 $Si \Delta < 0$, $y(t) = \left(A\cos\left(\frac{\sqrt{-\Delta}}{2a}t\right) + B\sin\left(\frac{\sqrt{-\Delta}}{2a}t\right)\right)e^{-\frac{b}{2a}t}$ avec A et B des nombres

Exercice 16. Résoudre l'équation différentielle y'' + 4y' + 5y = 0 où y est une fonction à valeurs réelles.

Corollaire 1. Les solutions de l'équation différentielle $y'' + \omega^2 y = 0$ avec $\omega \in \mathbb{R}^*$ et y une fonction à valeurs dans \mathbb{R} sont les fonctions y définies par $y(t) = A\cos(\omega t) + B\sin(\omega t)$ avec A et B des nombres réels.

Exercice 17. Résoudre l'équation différentielle y'' + 2y = 0 où y est une fonction à valeurs réelles.

Équations linéaires du second ordre à coefficients constants avec second membre

La *méthode de variation de la constante* permet de se ramener à une équation différentielle linéaire d'ordre 1:

Propriété 6. On considère trois nombres a, b et c réels ou complexes avec $a \neq 0$ et une fonction d continue $sur\ un\ intervalle\ I\ \grave{a}\ valeurs\ dans\ \mathbb{R}\ ou\ \mathbb{C},\ alors\ l'équation\ différentielle\ ay''+by'+cy=d(t)\ admet\ pour$ solutions les fonctions y définies par $y(t) = f(t)e^{rt}$ où r est une solution de l'équation $ar^2 + br + c = 0$ et f une primitive d'une solution de l'équation différentielle $y' + \left(2r + \frac{b}{a}\right)y = \frac{1}{a}d(t)e^{-rt}$.

Remarque 3. L'équation différentielle $y' + (2r + \frac{b}{a}) y = \frac{1}{a}d(t)e^{-rt}$ n'est pas à connaître, en pratique il faut exprimer y sous la forme $y(t) = f(t)e^{rt}$, dériver deux fois puis remplacer dans l'équation différentielle afin d'obtenir une équation différentielle d'ordre 1 vérifiée par f'.

Exercice 18. On considère l'équation différentielle (E): y'' + 2y' + y = 2 sur \mathbb{R} .

- Déterminer les solutions de l'équation sans second membre associée à (E).
- On pose $y(t) = f(t)e^{-t}$. Calculer y'(t) puis y''(t), remplacer dans l'équation différentielle (E) et en déduire l'équation différentielle vérifiée par f'.
- En déduire les solutions de l'équation différentielle (E).

La *méthode de la solution particulière* permet de se ramener à une équation différentielle sans second membre :

Théorème 6. On considère trois nombres a, b et c réels ou complexes avec $a \neq 0$ et une fonction d continue sur un intervalle I à valeurs dans \mathbb{R} ou \mathbb{C} , alors l'équation différentielle ay'' + by' + cy = d(t) admet pour solutions les fonctions y définies par $y(t) = \tilde{y}(t) + y_H(t)$ où \tilde{y} est une solution particulière de l'équation différentielle et y_H la solution générale de l'équation différentielle sans second membre associée.

Exercice 19. On considère l'équation différentielle (E): y'' + 2y' + y = 2 sur \mathbb{R} .

- Déterminer une solution particulière \tilde{y} de l'équation différentielle (E) sous la forme d'une fonction constante.
- En déduire les solutions de l'équation différentielle (E).

Propriété 7. On considère trois nombres a, b et c réels ou complexes avec $a \neq 0$ et une fonction d continue sur un intervalle I à valeurs dans \mathbb{R} ou \mathbb{C} , alors l'équation différentielle ay'' + by' + c = d(t) avec la condition initiale $y(t_0) = \alpha$ et $y'(t_0) = \beta$ admet une unique solution.

Exercice 20. On considère l'équation différentielle $(E): y'' - 6y' + 8y = e^t sur \mathbb{R}$.

- Déterminer une solution particulière de l'équation différentielle (E) sous la forme $\tilde{y}(t) = me^t$.
- En déduire les solutions de l'équation différentielle (E).
- Résoudre l'équation différentielle $y'' 6y' + 8y = e^t$ avec la condition initiale y(0) = 1 et y'(0) = 2.

Le principe de superposition peut être utile lors de la recherche d'une solution particulière :

Propriété 8. On considère trois nombres a, b et c réels ou complexes avec $a \neq 0$ et deux fonctions d_1 et d_2 continues sur un intervalle I à valeurs dans \mathbb{R} ou \mathbb{C} . Si y_1 est une solution de l'équation différentielle (E_1) : $ay'' + by' + cy = d_1$ et y_2 une solution de l'équation différentielle (E_2) : $ay'' + by' + cy = d_2$ alors $y_1 + y_2$ est une solution de l'équation différentielle (E): $ay'' + by' + cy = d_1 + d_2$.

Exercice 21. On considère l'équation différentielle $(E): y'' + y' + y = 3\cos t - 2\sin t$ sur \mathbb{R} dans laquelle y est à valeurs réelles.

- Exprimer $3\cos t 2\sin t$ sous la forme $C_1e^{it} + C_2e^{-it}$ avec $C_1, C_2 \in \mathbb{C}$ en utilisant les formules d'Euler.
- Déterminer une solution particulière de l'équation différentielle $y'' + y' + y = (\frac{3}{2} + i)e^{it}$ sous la forme $\tilde{y}_1(t) = me^{it}$.
- Déterminer une solution particulière de l'équation différentielle $y'' + y' + y = (\frac{3}{2} i)e^{-it}$ sous la forme $\tilde{y}_2(t) = me^{-it}$.
- En déduire une solution particulière \tilde{y} de l'équation différentielle (E).
- Résoudre l'équation différentielle (E).

Remarque 4. Dans l'exercice précédent, il est plus rapide de chercher directement une solution particulière de l'équation différentielle (E) sous la forme $\tilde{y}(t) = \alpha \cos t + \beta \sin t$.

Exercices supplémentaires

Exercice 22

Déterminer les primitives sur \mathbb{R} de la fonction $f: t \mapsto \frac{1}{1+4t^2}$.

Exercice 23

Déterminer les primitives sur \mathbb{R} de la fonction $f: t \mapsto 2\cos(3t) - 3\sin(2t)$.

Exercice 24

Déterminer les primitives sur \mathbb{R} de la fonction $f: t \mapsto t^2(t^3+1)^3$.

Exercice 25

Déterminer les primitives sur \mathbb{R} de la fonction $f: t \mapsto \frac{t}{(t^2+1)^2}$.

Exercice 26 (*)

Déterminer les primitives sur \mathbb{R} de la fonction $f: t \mapsto \frac{1-t}{1+t^2}$.

Exercice 27

Déterminer les primitives sur $]0; +\infty[$ de la fonction $f: t \mapsto t \ln t$.

Exercice 28 $(\star\star)$

Déterminer les primitives sur $]0; +\infty[$ de la fonction $f: t \mapsto \frac{\ln t}{t^2}$.

Exercice 29 $(\star\star)$

Déterminer les primitives sur \mathbb{R} de la fonction $f: t \mapsto \frac{e^t - 1}{e^t + 1}$.

Exercice 30 (\star)

Déterminer les primitives sur \mathbb{R} de la fonction $f: t \mapsto t^2 e^t$. (on pourra chercher F(t) sous la forme $F(t) = (at^2 + bt + c)e^t$)

Exercice 31 (\star)

Déterminer les primitives sur \mathbb{R} de la fonction $f: t \mapsto (2\cos t - 3\sin t)e^{-t}$. (on pourra chercher F(t) sous la forme $F(t) = (a\cos t + b\sin t)e^{-t}$)

Exercice 32

Résoudre l'équation différentielle $y' - \sin(3t)y = 0$ sur \mathbb{R} .

Exercice 33

Résoudre l'équation différentielle $y' + \frac{1}{\sqrt{1-t^2}}y = 0$ sur] -1; 1[avec la condition initiale $y(\frac{1}{2}) = 1$.

Exercice 34

Résoudre l'équation différentielle $y' + \frac{1}{t}y = t$ sur l'intervalle $] - \infty; 0[$ au moyen de la méthode de variation de la constante.

Exercice 35

Résoudre l'équation différentielle y' + 2ty = t sur \mathbb{R} . (on pourra chercher une solution particulière \tilde{y} sous la forme d'un fonction constante)

Exercice 36

Résoudre l'équation différentielle $(t^2+1)y'+y=1$ sur \mathbb{R} . (on pourra chercher une solution particulière \tilde{y} sous la forme d'un fonction constante)

Exercice 37

Résoudre l'équation différentielle $y' + y = t^2$ sur \mathbb{R} . (on pourra chercher une solution particulière \tilde{y} sous la forme d'un fonction trinôme du second degré)

Exercice 38 (*)

Résoudre l'équation différentielle $y' - y = te^t$ sur \mathbb{R} .

Exercice 39 (*)

Résoudre l'équation différentielle $y' + y = 2\cos(t)$ sur \mathbb{R} .

Exercice 40 (\star)

Résoudre l'équation différentielle $(t^2+1)y'+ty=\frac{1}{\sqrt{t^2+1}}$ sur \mathbb{R} .

Exercice 41 (\star)

Résoudre l'équation différentielle $(e^t+1)y'+e^ty=e^t-1$ sur $\mathbb R.$

Exercice 42 (\star)

Résoudre l'équation différentielle $\cos(t)$ $y' - \sin(t)$ y = 1 sur l'intervalle $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$.

Exercice 43 $(\star\star)$

Résoudre l'équation différentielle $y' - \tan(t)$ $y = \frac{1}{\cos(t) + 1}$ sur l'intervalle $\left] - \frac{\pi}{2}; \frac{\pi}{2} \right[$.

Exercice 44 $(\star\star)$

Résoudre l'équation différentielle $(t-1)^2y' + (t-2)y = 0$ sur l'intervalle $]1; +\infty[$.

Exercice 45

Résoudre l'équation différentielle y'' + y' - 2y = 0 sur \mathbb{R} .

Exercice 46

Résoudre l'équation différentielle y'' - 2y' + y = 0 sur \mathbb{R} .

Exercice 47

Résoudre l'équation différentielle y'' - 2y' + 2y = 0 sur \mathbb{R} où y est à valeurs réelles.

Exercice 48

Résoudre l'équation différentielle y'' - y' - 2y = 0 sur \mathbb{R} avec les conditions initiales y(0) = 1 et y'(0) = 1.

Exercice 49

Résoudre l'équation différentielle $y'' + y' - 2y = e^t$ sur \mathbb{R} au moyen de la méthode de variation de la constante.

Exercice 50

Résoudre l'équation différentielle $y'' - y' - 2y = e^t$ sur \mathbb{R} .

Exercice 51 (\star)

Résoudre l'équation différentielle $y'' + 2y' - 3y = 1 - 2t - 3t^2$ sur \mathbb{R} .

Exercice 52 (\star)

Résoudre l'équation différentielle $y'' - 4y' + 4y = te^{2t}$ sur \mathbb{R} .

Exercice 53 (\star)

Résoudre l'équation différentielle $y'' + y = e^t + e^{-t}$ sur \mathbb{R} où y est à valeurs réelles.

Exercice 54

Résoudre l'équation différentielle $y'' + 9y = 5\cos(2t)$ sur \mathbb{R} avec les conditions initiales y(0) = 2 et y'(0) = 2.

Exercice 55 (*)

Résoudre l'équation différentielle $y'' + 4y' + 5y = \cos(t) e^{-2t}$ sur \mathbb{R} .

Exercice 56 (***)

On considère deux solutions y_1 et y_2 d'une équation différentielle linéaire d'ordre 2 sans second membre a(t)y'' + b(t)y' + c(t)y = 0. Montrer que $w = y_1y_2' - y_1'y_2$ est solution d'une équation différentielle linéaire d'ordre 1 que l'on déterminera.

Réponses

1)
$$y(t) = \frac{1}{2}t^4 - t^2 + 5t$$
.

2)
$$F(t) = \arctan t + Cte$$
.

3)
$$F(t) = \frac{2}{5}t^2\sqrt{t} + Cte$$
.

4)
$$F(t) = \frac{1}{2} \ln \left(\frac{t^2+1}{2} \right) + 1.$$

5)
$$F(t) = (t-1)e^t$$
.

6)
$$F(t) = \frac{1}{2}(\sin t - \cos t)e^t$$
.

7)
$$y(t) = \lambda e^{2t}$$
, $\lambda(\cos\frac{t^2}{2} + i\sin\frac{t^2}{2})e^{-t}$, $\lambda e^{-\arctan t}$.

8)
$$y(t) = e^{\frac{1}{3} + \frac{2}{3}t\sqrt{t}}$$
.

9) aucune solution.

10)
$$f'(t) = t^2$$
 d'où $y(t) = \frac{1}{3}t^2 + \frac{Cte}{t}$

11)
$$\tilde{y}(t) = \frac{1}{3}t^2$$
 d'où $y(t) = \frac{1}{3}t^2 + \frac{Cte}{t}$

12)
$$y(t) = \frac{1}{2} (e^t + e^{-t}).$$

13)
$$\tilde{y}_1(t) = -\frac{1}{2}(1+i)e^{it}$$
 et $\tilde{y}_2(t) = \frac{1}{2}(-1+i)e^{-it}$ d'où $\tilde{y}(t) = -\cos t + \sin t$ et $y(t) = -\cos t + \sin t + \lambda e^t$.

14)
$$y(t) = \lambda e^t + \mu e^{2t}$$
, $(\lambda + \mu t)e^{-t}$, $\lambda e^{(1-i)t} + \mu e^{(-1-i)t}$.

15)
$$y(t) = 3e^{2t} + 2e^{3t}$$
.

16)
$$y(t) = (A\cos t + B\sin t)e^{-2t}$$
.

17)
$$y(t) = A\cos(\sqrt{2}t) + B\sin(\sqrt{2}t)$$
.

18)
$$f'$$
 vérifie l'équation différentielle $y' = 2e^t$ d'où $y(t) = 2 + (\lambda + \mu t)e^{-t}$.

19)
$$\tilde{y}(t) = 2$$
 d'où $y(t) = 2 + (\lambda + \mu t)e^{-t}$.

20)
$$y(t) = \frac{1}{3}e^t + \frac{1}{2}e^{2t} + \frac{1}{6}e^{4t}$$
.

21)
$$\tilde{y}_1(t) = \left(1 - \frac{3}{2}i\right)e^{it}$$
 et $\tilde{y}_2(t) = \left(1 + \frac{3}{2}i\right)e^{-it}$ d'où $\tilde{y}(t) = 2\cos t + 3\sin t$ et $y(t) = 2\cos t + 3\sin t + \left(A\cos\left(\frac{\sqrt{3}}{2}t\right) + B\sin\left(\frac{\sqrt{3}}{2}t\right)\right)e^{-\frac{1}{2}t}$.

22)
$$F(t) = \frac{1}{2}\arctan(2t) + Cte$$
.

23)
$$F(t) = \frac{2}{3}\sin(3t) + \frac{3}{2}\cos(2t) + Cte$$
.

24)
$$F(t) = \frac{1}{12}(t^3+1)^4 + Cte$$
.

25)
$$F(t) = \frac{1}{2(t^2+1)} + Cte$$
.

26)
$$F(t) = \arctan t - \frac{1}{2}\ln(1+t^2) + Cte.$$

27)
$$F(t) = \frac{1}{2}(\ln t)^2 + Cte$$
.

28)
$$F(t) = -\frac{1}{t} - \frac{\ln t}{t} + Cte$$
.

29)
$$F(t) = -t + 2\ln(e^t + 1) + Cte$$
.

30)
$$F(t) = (t^2 - 2t + 2)e^t + Cte$$
.

31)
$$F(t) = (\frac{1}{2}\cos t + \frac{5}{2}\sin t)e^{-t} + Cte.$$

32)
$$y(t) = \lambda e^{-\frac{1}{3}\cos(3t)}$$
.

33)
$$y(t) = e^{\arccos(t) - \frac{\pi}{3}}$$
.

34)
$$y(t) = \frac{1}{3}t^2 + \frac{Cte}{t}$$
.

35)
$$y(t) = \frac{1}{2} + \lambda e^{-t^2}$$
.

36)
$$y(t) = 1 + \lambda e^{-\arctan(t)}$$
.

37)
$$y(t) = t^2 - 2t + 2 + \lambda e^{-t}$$

38)
$$y(t) = \left(\frac{t^2}{2} + \lambda\right) e^t$$
.

39)
$$y(t) = \cos t + \sin t + \lambda e^{-t}$$
.

40)
$$y(t) = \frac{\arctan(t) + \lambda}{\sqrt{t^2 + 1}}.$$

41)
$$y(t) = \frac{e^t - t + \lambda}{e^t + 1}$$
.

42)
$$y(t) = \frac{t+\lambda}{\cos t}$$

43)
$$y(t) = \frac{t - \tan \frac{t}{2} + \lambda}{\cos t}$$
 en remarquant que $\frac{\cos t}{\cos t + 1} = 1 - \frac{1}{2(\cos \frac{t}{2})^2}$.

44)
$$y(t) = \frac{\lambda e^{-\frac{1}{t-1}}}{t-1}$$
 en remarquant que $\frac{t-2}{(t-1)^2} = \frac{1}{t-1} - \frac{1}{(t-1)^2}$.

45)
$$y(t) = \lambda e^t + \mu e^{-2t}$$
.

46)
$$y(t) = (\lambda + \mu t)e^t$$
.

47)
$$y(t) = (A\cos t + B\sin t)e^t$$
.

48)
$$y(t) = \frac{1}{3}e^{-t} + \frac{2}{3}e^{2t}$$

49)
$$y(t) = \lambda e^{-2t} + \mu e^t + \frac{1}{3}te^t$$
.

50)
$$y(t) = \lambda e^{-t} + \mu e^{2t} - \frac{1}{2}e^{t}$$
.

51)
$$y(t) = \frac{5}{3} + 2t + t^2 + \lambda e^t + \mu e^{-3t}$$
.

52)
$$y(t) = \left(\lambda + \mu t + \frac{t^3}{6}\right) e^{2t}.$$

53)
$$y(t) = \frac{1}{2}e^t + \frac{1}{2}e^{-t} + \lambda \cos t + \mu \sin t.$$

54)
$$y(t) = \cos(2t) + \cos(3t) + \frac{2}{3}\sin(3t)$$
.

55)
$$y(t) = \left(\left(\frac{t}{2} + \lambda\right)\sin t + \mu\cos t\right)e^{-2t}$$
 en remarquant que $\cos t$ est la partie réelle de e^{it} .

56)
$$a(t)w' + b(t)w = 0.$$