VIII. Ensembles de nombres

1 Ensemble \mathbb{N} des nombres entiers naturels

Exercice 1.

- Déterminer les diviseurs de 1, les diviseurs de 1×2 , les diviseurs de $1 \times 2 \times 3$, les diviseurs de $1 \times 2 \times 3 \times 4$ puis les diviseurs de $1 \times 2 \times 3 \times 4 \times 5$.
- Quelle conjecture peut-on émettre concernant le nombre de diviseurs de $1 \times 2 \times 3 \times \cdots \times n$?
- Déterminer le nombre de diviseurs de $1 \times 2 \times 3 \times 4 \times 5 \times 6$.

Définition 1. Une propriété (P_n) dépendant d'un nombre entier naturel n est dite **héréditaire** si lorsqu'elle est vraie pour un certain rang n alors elle est également vraie pour le rang n + 1.

Exemple 1. La propriété (P_n) : « $2^n + n$ est un nombre pair » n'est pas héréditaire car elle est vraie au rang n = 2 mais pas au rang n = 3.

Exercice 2. La propriété (P_n) : « $1 \times 2 \times 3 \times \cdots \times n$ possède 2^{n+1} diviseurs » est-elle héréditaire?

Exemple 2. La propriété (P_n) : « 2^n est un multiple de 3 » est héréditaire, en effet supposons qu'il existe un rang n pour lequel 2^n est un multiple de 3 alors $2^n = 3k$ avec $k \in \mathbb{N}$ d'où $2^{n+1} = 2^n \times 2 = 3k \times 2 = 3 \times 2k$ et 2^{n+1} est aussi un multiple de 3.

Remarque 1. Une propriété héréditaire peut être fausse pour tout rang.

Exercice 3. Montrer que la propriété (P_n) : « $10^n + 1$ est un multiple de 9 » est héréditaire.

Théorème 1. Principe de récurrence

Une propriété (P_n) dépendant d'un nombre entier naturel n qui est héréditaire et qui est vraie au rang 0 est vraie pour tout rang $n \in \mathbb{N}$.

Remarque 2. Une propriété qui est héréditaire et qui est vraie au rang n_0 sera vraie pour tout rang $n \geqslant n_0$.

Exemple 3. Montrons que $4^n + 2$ est un multiple de 3 pour tout $n \in \mathbb{N}$.

On considère la propriété (P_n) : « $4^n + 2$ est un multiple de 3 » .

- initialisation : $4^0 + 2 = 3$ est un multiple de 3 donc la propriété P_0 est vraie.
- $h\acute{e}r\acute{e}dit\acute{e}$: supposons qu'il existe un entier naturel $n \in \mathbb{N}$ tel que P_n soit vraie, on a alors $4^n + 2 = 3k$ avec $k \in \mathbb{N}$ d'où $4^n = 3k 2$, $4^{n+1} = 12k 8$ et $4^{n+1} + 2 = 12k 6 = 3(4k 2)$ donc P_{n+1} est vraie.
- conclusion : la propriété P_n est vraie au rang 0 et est héréditaire donc d'après le principe de récurrence, la propriété P_n est vraie pour tout $n \in \mathbb{N}$ et on a prouvé que $4^n + 2$ est un multiple de 3 pour tout $n \in \mathbb{N}$.

Exercice 4. On considère la matrice $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

Démontrer que pour tout $n \in \mathbb{N}$ on a $A^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$.

Exercice 5. Démontrer que pour tout $n \in \mathbb{N}$ on a $n < 2^n$.

Exercice 6. Démontrer que pour tout $n \in \mathbb{N}$ la fonction $f: x \mapsto e^{2x}$ est n fois dérivable sur \mathbb{R} et que sa dérivée n-ième est $f^{(n)}(x) = 2^n e^x$.

Corollaire 1. Suite définie par récurrence

On considère une fonction f et un nombre réel a, il existe une unique suite $(u_n)_{n\geqslant 0}$ définie par :

$$\begin{cases} u_0 = a \\ u_{n+1} = f(u_n), \text{ pour tout } n \geqslant 0 \end{cases}$$

Exercice 7. On considère la suite $\begin{cases} u_0 &= 0 \\ u_{n+1} &= 2u_n + 1 , \ pour \ tout \ n \geqslant 0 \end{cases} .$

- Calculer u_0 , u_1 , u_2 , u_3 et u_4 .
- Montrer que pour tout $n \in \mathbb{N}$ on a $u_n = 2^n 1$, pour tout $n \ge 0$.

Remarque 3. On peut également définir une suite par récurrence sur les deux termes précédents en donnant u_0 et u_1 en condition initiale.

Exercice 8. On considère la suite
$$\begin{cases} u_0 &= 1 \\ u_1 &= 2 \\ u_{n+2} &= 3u_{n+1} - 2u_n , pour tout \ n \geqslant 0 \end{cases} .$$

Calculer u_0 , u_1 , u_2 , u_3 et u_4 .

Corollaire 2. Principe de récurrence avec prédécesseurs

On considère une propriété P_n dépendant d'un nombre entier naturel n telle que :

- P_0 est vraie (initialisation)
- si P_0 et P_1 et ... et P_n sont vraies alors P_{n+1} vraie (**hérédité forte**) alors la propriété P_n est vraie pour tout $n \in \mathbb{N}$.

Exercice 9. On considère la suite
$$\begin{cases} u_0 &= 1 \\ u_1 &= 2 \\ u_{n+2} &= 3u_{n+1} - 2u_n , pour tout \ n \geqslant 0 \end{cases} .$$

Démontrer que pour tout $n \in \mathbb{N}$ on a $u_n = 2^n$, $n \ge 0$.

Définition 2. Symbole somme

Étant donnés un entier naturel n non nul et n nombres a_1, a_2, \ldots, a_n réels ou complexes, on note :

$$\sum_{1 \le k \le n} a_k = \sum_{k=1}^{k=n} a_k = a_1 + a_2 + \dots + a_n$$

Remarque 4. On a $\sum_{k=1}^{k=n} a = na$ pour a un nombre réel ou complexe et $n \in \mathbb{N}^*$.

Exercice 10. Calculer
$$\sum_{k=2}^{k=6} k(k+1)$$
.

Propriété 1. Soit
$$n \in \mathbb{N}^*$$
, alors $\left|\sum_{k=1}^{k=n} k = \frac{n(n+1)}{2}\right|$.

Exercice 11. Démontrer que
$$\sum_{k=0}^{k=n} 2^k = 2^{n+1} - 1$$
 pour $n \in \mathbb{N}$.

Définition 3. Symbole produit

Étant donnés un entier naturel n non nul et n nombres a_1, a_2, \ldots, a_n réels ou complexes, on note :

$$\prod_{1 \leqslant k \leqslant n} a_k = \prod_{k=1}^{k=n} a_k = a_1 \times a_2 \times \dots \times a_n$$

Remarque 5. On a $\prod_{k=1}^{n} a = a^{n}$ pour a un nombre réel ou complexe et $n \in \mathbb{N}^{*}$.

Exercice 12. Calculer $\prod_{k=0}^{k=6} \frac{k}{k+2}$.

Définition 4. Symbole factorielle

Etant donné un entier naturel n on définit sa factorielle n! par :

$$0! = 1$$

$$n! = \prod_{k=1}^{k=n} k = 1 \times 2 \times \dots \times n , n > 0$$

Exercice 13. Calculer $\frac{8!}{(4!)^2}$.

Définition 5. Étant donné un nombre r réel ou complexe, on appelle suite arithmétique de raison r une suite définie par la relation de récurrence $u_{n+1} = u_n + r$, $n \in \mathbb{N}$.

Exemple 4. La suite des entiers pairs et la suite des entiers impairs sont arithmétiques de raison 2.

Propriété 2. On considère une suite arithmétique $(u_n)_{n\geqslant 0}$ de raison r et $p,q\in\mathbb{N}$ avec $p\leqslant q$, alors :

$$u_q = u_p + (q - p)r$$

$$\sum_{k=p}^{k=q} u_k = (q - p + 1) \frac{u_p + u_q}{2}$$

Exercice 14. Calculer la somme des n premiers entiers impairs.

Définition 6. Étant donné un nombre r réel ou complexe, on appelle suite géométrique de raison r une suite définie par la relation de récurrence $u_{n+1} = u_n \times r$, $n \in \mathbb{N}$.

Exemple 5. La suite des puissances de deux est géométrique.

Propriété 3. On considère une suite géométrique $(u_n)_{n\geqslant 0}$ de raison r et $p,q\in\mathbb{N}$ avec $p\leqslant q$, alors :

$$u_q = u_p \times r^{q-p}$$

$$\sum_{k=p}^{k=q} u_k = \frac{u_p - r \times u_q}{1 - r} \text{ si } r \neq 1$$

Exercice 15. Calculer $\sum_{k=0}^{k=n} 2^k$.

2 Ensembles finis

2.1 Définition d'un ensemble fini

Définition 7. Image directe et image réciproque

Étant donnés une application $f: E \to F$, $A \subset E$ et $B \subset F$, on appelle **image directe** de A par f et on note f(A) l'ensemble des images par f des éléments de A et on appelle **image réciproque** de B par f et on note $f^{-1}(B)$ l'ensemble des antécédents par f des éléments de B:

$$f(A) = \{f(x)/x \in A\}$$

$$f^{-1}(B) = \{x/f(x) \in B\}$$

Remarque 6. On a $f(A) \subset F$ et $f^{-1}(B) \subset E$.

Exercice 16. On considère
$$f: \mathbb{R} \to \mathbb{R}$$
, déterminer $f([-1;1])$ et $f^{-1}([1;2])$.

Définition 8. Une application $f: E \to F$ est dite **injective** si tout élément de F admet au plus un antécédent par f, **surjective** si tout élément de F admet au moins un antécédent par f et **bijective** si tout élément de F admet exactement un antécédent par f.

Remarque 7. Une application est bijective si et seulement si elle est à la fois injective et surjective.

Remarque 8. Une application $f: E \to F$ est surjective si et seulement si f(E) = F.

Remarque 9. Si $f: E \to F$ est injective alors $g: E \to f(E)$ est bijective.

Exemple 6. On considère $f_1: \mathbb{R}_+ \to \mathbb{R}$, $f_2: \mathbb{R} \to \mathbb{R}_+$ et $f_3: \mathbb{R}_+ \to \mathbb{R}_+$: f_1 est une injective $x \mapsto x^2$ $x \mapsto x^2$

tion, f_2 est une surjection et f_3 est une bijection.

Exercice 17. Montrer que $f: \mathbb{R}^* \to \mathbb{R}$ est injective. $x \mapsto \frac{1}{x}$

Définition 9. Étant donnés $p, q \in \mathbb{N}$ avec $p \leqslant q$, on note $\llbracket p; q \rrbracket = \{n \in \mathbb{N}/p \leqslant n \leqslant q\} \rfloor$

Définition 10. Un ensemble E est dit fini s'il est vide ou s'il existe $n \in \mathbb{N}^*$ et une bijection de [1;n] sur E, le nombre n est alors unique et appelé cardinal ou nombre d'éléments de l'ensemble E noté Card(E), on convient que $Card(\emptyset) = 0$.

Remarque 10. La bijection de la définition correspond à l'idée intuitive de numérotation.

Exercice 18. Montrer que l'ensemble E = [5; 10] est fini et déterminer son cardinal.

Propriété 4. On considère deux ensembles E et F avec $E \subset F$, si F est un ensemble fini alors E est un ensemble fini et $Card(E) \leq Card(F)$ avec Card(E) = Card(F) si et seulement si E = F.

Propriété 5. On considère deux ensembles finis E et F ainsi qu'une bijection $f: E \to F$ alors Card(E) = Card(F).

Propriété 6. On considère deux ensembles finis E et F avec Card(E) = Card(F) ainsi qu'une application $f: E \to F$ alors les propositions suivantes sont équivalentes :

- f est injective
- f est surjective
- f est bijective

Contre-exemple 1. L'application $f: \mathbb{N} \to \mathbb{N}$ est injective mais pas surjective. $n \mapsto n^2$

2.2 Dénombrements

Propriété 7. On considère deux ensembles finis E et F alors $E \cup F$ et $E \cap F$ sont des ensembles finis et $\boxed{\operatorname{Card}(E \cup F) = \operatorname{Card}(E) + \operatorname{Card}(F) - \operatorname{Card}(E \cap F)}$.

Exercice 19. Vérifier la formule avec E = [2; 5] et F = [3; 7].

Propriété 8. On considère deux ensembles finis E et F alors $E \times F = \{(x;y)/x \in E, y \in F\}$ est un ensemble fini et $\boxed{\operatorname{Card}(E \times F) = \operatorname{Card}(E) \times \operatorname{Card}(F)}$.

Exercice 20. Déterminer les éléments de $[1;2] \times [1;3]$.

Propriété 9. On considère deux ensembles finis E et F alors l'ensemble $\mathcal{F}(E,F)$ des applications de E dans F est un ensemble fini et $\boxed{\operatorname{Card}(\mathcal{F}(E,F)) = \operatorname{Card}(F)^{\operatorname{Card}(E)}}$.

Exercice 21. Déterminer les éléments de $\mathcal{F}([1;2],[1;3])$.

Exercice 22. Déterminer les injections de [1;2] dans [1;3].

Propriété 10. On considère un ensemble fini E de cardinal n, l'ensemble des bijections de E dans E appelées également permutations est de cardinal n!.

Exercice 23. Déterminer les permutations de [1; 3].

Propriété 11. On considère un ensemble fini E, alors l'ensemble $\mathcal{P}(E)$ des parties de E est un ensemble fini et $\text{Card}(\mathcal{P}(E)) = 2^{\text{Card}(E)}$.

Exercice 24. Déterminer $\mathcal{P}([1;3])$.

Propriété 12. On considère un ensemble fini E de cardinal $n \neq 0$ et $p \in [0; n]$, alors l'ensemble des parties de E ayant p éléments est un ensemble fini de cardinal $n \neq 0$ et $p \in [0; n]$, alors l'ensemble des parties $n \neq n$.

Exercice 25. Déterminer les parties de [1,4] ayant 2 éléments.

Propriété 13. On considère $n \in \mathbb{N}^*$, alors :

$$\begin{pmatrix} n \\ p \end{pmatrix} = \begin{pmatrix} n \\ n-p \end{pmatrix}, p \in \llbracket 0; n \rrbracket$$

$$\begin{pmatrix} n \\ p \end{pmatrix} = \begin{pmatrix} n-1 \\ p-1 \end{pmatrix} + \begin{pmatrix} n-1 \\ p \end{pmatrix}, p \in \llbracket 1; n-1 \rrbracket$$

$$\sum_{k=0}^{k=n} \begin{pmatrix} n \\ k \end{pmatrix} = 2^n$$

Propriété 14. Formule du binôme

On considère x et y deux nombres réels ou complexes et $n \in \mathbb{N}^*$ alors :

$$(x+y)^n = \sum_{k=0}^{k=n} \binom{n}{k} x^{n-k} y^k$$

Exercice 26. Déterminer le coefficient de x^7 dans le développement de $(1+x)^{10}$.

Exercices supplémentaires

Exercice 27

Montrer que la propriété « $8^n + 1$ est un multiple de 7 » est héréditaire, que peut-on en déduire?

Exercice 28

Démontrer que $7^n - 1$ est un multiple de 3 pour tout $n \in \mathbb{N}$.

Exercice 29

Démontrer que le n-ième nombre entier impair est 2n-1.

Exercice 30 (\star)

Déterminer le reste de la division euclidienne de 8^n par 7.

Exercice 31 (**)

Démontrer que pour tout $n \in \mathbb{N}^*$ le produit n(n+1)(2n+1) est divisible par 6.

Exercice 32

On considère la matrice $A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$.

Démontrer que pour tout $n \in \mathbb{N}^*$ on a $\stackrel{\cdot}{A^n} = \begin{pmatrix} 2^{n-1} & -2^{n-1} \\ -2^{n-1} & 2^{n-1} \end{pmatrix}$.

Exercice 33

On considère la matrice $A=\left(\begin{array}{cc} 1 & 1 \\ 0 & 2 \end{array}\right)$.

Déterminer l'expression de A^n pour tout $n \in \mathbb{N}$.

Exercice 34 (\star)

On considère la matrice $A = \begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix}$.

Déterminer l'expression de A^n pour tout $n \in \mathbb{N}^*$.

Exercice 35

Démontrer que pour tout $n \in \mathbb{N}$ et $x \in \mathbb{R}_+$ on a $(1+x)^n \geqslant 1+nx$.

Exercice 36 (*)

Démontrer que pour tout $n \in \mathbb{N}$ on a $2n \leq 3^n$.

Exercice 37 (\star)

Démontrer que pour tout $n \in \mathbb{N}$ on a $3^n - 2^n \ge n$.

Exercice 38 (**)

Démontrer qu'il existe un entier n_0 tel que pour tout entier $n \ge n_0$ on a $(n+2)^2 \le 2^n$.

Exercice 39

Démontrer que pour tout $n \in \mathbb{N}$ la fonction $f: x \mapsto e^{-x}$ est n fois dérivable sur \mathbb{R} et que sa dérivée n-ième est $f^{(n)}(x) = (-1)^n e^{-x}$.

Exercice 40 (*)

Démontrer que pour tout $n \in \mathbb{N}$, la fonction sinus est n fois dérivable sur \mathbb{R} avec $\sin^{(n)}(x) = \sin\left(x + n\frac{\pi}{2}\right)$.

Exercice 41

On considère la suite
$$\left\{ \begin{array}{rcl} u_0 &=& 1 \\ u_{n+1} &=& 2u_n+n-1 \ , \ {\rm pour \ tout} \ n\geqslant 0 \end{array} \right. .$$

Démontrer que pour tout $n \in \mathbb{N}$ on a $u_n = 2^n - n$.

Exercice 42

On considère la suite
$$\left\{ \begin{array}{rcl} u_0 & = & 1 \\ u_{n+1} & = & u_n+n \ , \ {\rm pour \ tout} \ n \geqslant 0 \end{array} \right. .$$

Démontrer que pour tout $n \in \mathbb{N}$ on a $u_n = \frac{n^2 - n + 2}{2}$.

Exercice 43 (\star)

On considère la suite
$$\begin{cases} u_0 &= 1 \\ u_{n+1} &= \frac{u_n}{u_n + 2} \end{cases}$$
, pour tout $n \ge 0$.

Déterminer une formule explicite pour u_n .

Exercice 44 (**)

On considère la suite
$$\left\{ \begin{array}{rcl} u_0 & = & 1 \\ u_{n+1} & = & 3u_n+2 \ , \ {\rm pour \ tout} \ n\geqslant 0 \end{array} \right. .$$

Déterminer une formule explicite pour u_n .

Exercice 45

On considère la suite
$$\begin{cases} u_0 &= 0 \\ u_1 &= 1 \\ u_{n+2} &= 5u_{n+1} - 6u_n \text{, pour tout } n \geqslant 0 \end{cases}$$

Démontrer que pour tout $n \in \mathbb{N}$ on a $u_n = 3^n - 2^n$.

Exercice 46 (***)

On considère la suite
$$\left\{ \begin{array}{rcl} u_0&=&1\\ u_1&=&1\\ u_{n+2}&=&u_{n+1}+6u_n \ , \ {\rm pour \ tout} \ n\geqslant 0 \end{array} \right. .$$

Déterminer une formule explicite pour u_n

Exercice 47

Calculer
$$\sum_{k=2}^{k=5} \frac{k}{k+1}.$$

Exercice 48 (\star)

Calculer
$$\sum_{k=0}^{k=n} (2k+1).$$

Exercice 49 (\star)

Démontrer que
$$\sum_{k=1}^{k=n} \frac{1}{k(k+1)} = \frac{n}{n+1}$$
 pour $n \in \mathbb{N}$.

Exercice 50 (\star)

Démontrer que
$$\sum_{k=1}^{k=n} k^2 = \frac{n(n+1)(2n+1)}{6}$$
 pour $n \in \mathbb{N}$.

Exercice 51

Calculer
$$\prod_{k=-2}^{k=2} 2k - 1.$$

Exercice 52

Calculer
$$\prod_{k=0}^{k=n} 2^k$$
.

Exercice 53

Calculer
$$\frac{6!}{(2!)^2(3!)^2}$$
.

Exercice 54

Calculer
$$\frac{1! \times 3! \times 5! \times 7!}{10!}$$
.

Exercice 55

Démontrer que pour tout $n \in \mathbb{N}$, la fonction $f: x \mapsto \frac{1}{x}$ est n fois dérivable sur $]0; +\infty[$ avec $f^{(n)}(x) = \frac{(-1)^n n!}{x^{n+1}}$.

Exercice 56 (\star)

Démontrer que pour tout $n \in \mathbb{N}$, la fonction $f: x \mapsto \frac{1}{1-x}$ est n fois dérivable sur $]1; +\infty[$ et déterminer sa dérivée n-ième.

Exercice 57 $(\star\star)$

On considère la suite
$$\begin{cases} u_0 &= 1 \\ u_1 &= 1 \\ u_{n+2} &= (n+2)(u_n+u_{n+1}) \ , \ \text{pour tout } n \in \mathbb{N} \end{cases} .$$

Démontrer que $n! \leq u_n \leq (n+1)!$ pour tout $n \in \mathbb{N}$.

Exercice 58 (**)

Calculer
$$\sum_{k=0}^{k=n} k(k!)$$
.

Exercice 59

Calculer
$$1 + 3 + 5 + 7 + \dots + 99$$
.

Exercice 60

Calculer
$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots + \frac{1}{1024}$$
.

Exercice 61 (\star)

Calculer
$$\sum_{k=0}^{k=n} 2^{2k+1}.$$

Exercice 62 (\star)

Calculer
$$\prod_{k=0}^{k=n} 2^{2k+1}.$$

Exercice 63

On considère la fonction
$$f:\mathbb{R}\to\mathbb{R}$$
 , déterminer $f([-2;0])$ et $f^{-1}([-1;1])$. $x\mapsto x^2+x+1$

Exercice 64 (**)

On considère la fonction
$$f: \mathbb{R} \to \mathbb{R}$$
 , déterminer $f([-2;2])$ et $f^{-1}([-7;20])$. $x \mapsto 2x^3 + 3x^2 - 12x$

Exercice 65

On considère l'application
$$f: \mathbb{N} \to \mathbb{N}$$
. $n \mapsto n+1$ f est-elle surjective ? f est-elle injective ?

Exercice 66

Démontrer que la fonction
$$f: [-1;1] \to [-1;1]$$
 est bijective.
$$x \mapsto \frac{2x}{x^2+1}$$

Exercice 67

Montrer que l'application
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 est bijective. $(x;y) \mapsto (x+y;x-y)$

Exercice 68 (*)

Démontrer que l'application
$$f: \mathbb{N} \to \mathbb{N}$$
 est injective. $n \mapsto 3n + (-1)^n$

Exercice 69 (**)

Démontrer que l'application
$$f: \mathbb{N} \to \mathbb{Z}$$
 est bijective.
$$n \mapsto \frac{1+(2n+1)(-1)^{n+1}}{4}$$

Exercice 70

Montrer que l'ensemble $E=\{(m;n)\ /\ m,n\in\mathbb{N}\ \mathrm{et}\ m^2+n^2\leqslant 4\}$ est fini et déterminer son cardinal.

Exercice 71 (**)

Montrer que l'ensemble $E = \{n \mid n \in \mathbb{N} \text{ et } 2^n < n^3\}$ est fini.

Exercice 72

Déterminer le nombre de surjections de [1; 3] dans [1; 2].

Exercice 73 (*)

Déterminer pour $n, p \ge 1$ le nombre d'injections de [1; p] dans [1; n].

Exercice 74

Un domino est composé de deux parties comprenant chacune un nombre entier compris entre 0 et 6. Combien y a-t-il de dominos distincts?

Exercice 75

Deux équipes de football de 11 joueurs chacune se rencontrent. Au début du match les joueurs des deux équipes se serrent la main. À la fin du match les joueurs de l'équipe victorieuse se font l'accolade.

Combien de poignées de mains et combien d'accolades ont été échangées?

Exercice 76 (\star)

On appelle main un ensemble de cinq cartes. Combien existe-t-il de mains formées à partir d'un jeu de 32 cartes comprenant au moins 3 as?

Exercice 77 (*)

Calculer la probabilité d'obtenir un carré dans une main à partir d'un jeu de 52 cartes.

Exercice 78 (*)

Déterminer le nombre de diviseurs positifs de 720.

Exercice 79 (**)

On considère une table circulaire comportant 2n places, $n \in \mathbb{N}^*$. On désire disposer autour de cette table les 2n individus que constituent n couples hétérosexuels.

- 1. Déterminer le nombre de dispositions des 2n individus.
- 2. Déterminer le nombre de dispositions des 2n individus respectant l'alternance homme-femme.
- 3. Déterminer le nombre de dispositions des 2n individus ne séparant pas les couples.
- 4. Déterminer le nombre de dispositions des 2n individus ne séparant pas les couples et respectant l'alternance homme-femme.

Exercice 80

Calculer
$$\begin{pmatrix} 12 \\ 0 \end{pmatrix} + \begin{pmatrix} 11 \\ 1 \end{pmatrix} + \begin{pmatrix} 10 \\ 2 \end{pmatrix} + \begin{pmatrix} 9 \\ 3 \end{pmatrix} + \begin{pmatrix} 8 \\ 4 \end{pmatrix} + \begin{pmatrix} 7 \\ 5 \end{pmatrix} + \begin{pmatrix} 6 \\ 6 \end{pmatrix}$$
.

Exercice 81

Calculer
$$\binom{n}{1}$$
 pour $n \ge 1$ et calculer $\binom{n}{2}$ pour $n \ge 2$.

Exercice 82 (**)

On considère la fonction $f: x \mapsto (e^x + 1)^n, n \in \mathbb{N}$. Montrer que f est dérivable et exprimer f et f' à l'aide de la formule du binôme de Newton, en déduire $\sum_{k=0}^{k=n} k \binom{n}{k}$.

Exercice 83

On considère la matrice $M=\begin{pmatrix}1&1\\0&1\end{pmatrix}$. Calculer M^n pour $n\in\mathbb{N}$ en utilisant la formule du binôme en posant M=I+N avec $I=\begin{pmatrix}1&0\\0&1\end{pmatrix}$ et $N=\begin{pmatrix}0&1\\0&0\end{pmatrix}$.

Exercice 84 (*)

On considère la matrice
$$M=\left(\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array}\right)$$
. Calculer M^n pour $n\in\mathbb{N}$.

Réponses

- 1) Le nombre de diviseurs de $1 \times 2 \times 3 \times 4 \times 5 \times 6$ est 30.
- 2) La propriété n'est pas héréditaire car elle est vraie au rang n=5 mais pas au rang n=6.
- 3) Si $10^n + 1 = 9k$ alors $10^{n+1} + 1 = 9(10k 1)$.
- 4) Pour l'hérédité, on utilise la relation $A^{n+1} = A \times A^n$.
- 5) Pour l'hérédité, on remarque que $n+1 < 2^n + 1 \le 2^n + 2^n$.
- 6) Pour l'hérédité, on remarque que si u est une fonction dérivable alors e^u est aussi dérivable avec $(e^u)' = u'e^u$.
- 7) On a $u_0 = 0$, $u_1 = 1$, $u_2 = 3$, $u_3 = 7$ et $u_4 = 15$. Pour l'hérédité, on remarque que $2(2^n 1) + 1 = 2^{n+1} 1$.
- 8) On a $u_0 = 1$, $u_1 = 2$, $u_2 = 4$, $u_3 = 8$ et $u_4 = 16$.
- 9) Pour l'hérédité, on remarque que $3 \times 2^{n+1} 2 \times 2^n = 2^n \times (6-2) = 2^{n+2}$.
- **10**) 110.
- 11) Pour l'hérédité, on remarque que $\sum_{k=0}^{k=n+1} 2^k = \left(\sum_{k=0}^{k=n} 2^k\right) + 2^{n+1}.$
- 12) $\frac{3}{28}$.
- **13)** 70.
- 14) n^2 .
- **15**) $2^{n+1} 1$.
- **16)** f([-1;1]) = [0;1] et $f^{-1}([1;2]) = [-\sqrt{2};-1] \cup [1;\sqrt{2}]$
- 17) On montre que $\frac{1}{x} = \frac{1}{y} \Rightarrow x = y$.
- **18)** On montre que $f: [5;10] \rightarrow [1;6]$ est bijective. $n \mapsto n-4$
- **19)** On remarque que $E \cup F = [2; 7]$ et $E \cap F = [3; 5]$.
- **20)** $[1,2] \times [1,3] = \{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)\}.$
- **21)** $\begin{pmatrix} 1 \mapsto 1 \\ 2 \mapsto 1 \end{pmatrix}$, $\begin{pmatrix} 1 \mapsto 2 \\ 2 \mapsto 1 \end{pmatrix}$, $\begin{pmatrix} 1 \mapsto 3 \\ 2 \mapsto 1 \end{pmatrix}$, $\begin{pmatrix} 1 \mapsto 1 \\ 2 \mapsto 2 \end{pmatrix}$, $\begin{pmatrix} 1 \mapsto 2 \\ 2 \mapsto 2 \end{pmatrix}$, $\begin{pmatrix} 1 \mapsto 3 \\ 2 \mapsto 2 \end{pmatrix}$, $\begin{pmatrix} 1 \mapsto 3 \\ 2 \mapsto 3 \end{pmatrix}$, $\begin{pmatrix} 1 \mapsto 1 \\ 2 \mapsto 3 \end{pmatrix}$ et $\begin{pmatrix} 1 \mapsto 3 \\ 2 \mapsto 3 \end{pmatrix}$.
- **22)** $\begin{pmatrix} 1 \mapsto 1 \\ 2 \mapsto 2 \end{pmatrix}$, $\begin{pmatrix} 1 \mapsto 1 \\ 2 \mapsto 3 \end{pmatrix}$, $\begin{pmatrix} 1 \mapsto 2 \\ 2 \mapsto 1 \end{pmatrix}$, $\begin{pmatrix} 1 \mapsto 2 \\ 2 \mapsto 3 \end{pmatrix}$, $\begin{pmatrix} 1 \mapsto 3 \\ 2 \mapsto 1 \end{pmatrix}$ et $\begin{pmatrix} 1 \mapsto 3 \\ 3 \mapsto 2 \end{pmatrix}$.
- **23)** $\begin{pmatrix} 1 \mapsto 1 \\ 2 \mapsto 2 \\ 3 \mapsto 3 \end{pmatrix}$, $\begin{pmatrix} 1 \mapsto 1 \\ 2 \mapsto 3 \\ 3 \mapsto 2 \end{pmatrix}$, $\begin{pmatrix} 1 \mapsto 2 \\ 2 \mapsto 1 \\ 3 \mapsto 3 \end{pmatrix}$, $\begin{pmatrix} 1 \mapsto 2 \\ 2 \mapsto 3 \\ 3 \mapsto 1 \end{pmatrix}$, $\begin{pmatrix} 1 \mapsto 3 \\ 2 \mapsto 1 \\ 3 \mapsto 2 \end{pmatrix}$ et $\begin{pmatrix} 1 \mapsto 3 \\ 2 \mapsto 2 \\ 3 \mapsto 1 \end{pmatrix}$.
- **24**) {Ø, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
- **25)** {{1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}}.
- **26**) 120.
- **27**) Si $8^n + 1 = 7k$ alors $8^{n+1} + 1 = 7(8k 1)$.
- **28)** Si $7^n 1 = 3k$ alors $7^{n+1} 1 = 3(7k + 2)$.
- 29) Pour l'hérédité, on remarque qu'il faut ajouter 2 pour passer d'un nombre impair au suivant.
- **30**) 1.
- **31)** On remarque que $(n+1)(n+2)(2n+3) = n(n+1)(2n+1) + 6(n+1)^2$.
- **32)** Pour l'hérédité, on utilise la relation $A^{n+1} = A \times A^n$.

33)
$$A^n = \begin{pmatrix} 1 & 2^n - 1 \\ 0 & 2^n \end{pmatrix}$$
.

34)
$$A^n = \begin{pmatrix} 2-2^n & 2^n-1 \\ 2-2^{n+1} & 2^{n+1}-1 \end{pmatrix}$$
.

- **35)** On remarque que $(1+x)(1+nx) = 1 + (n+1)x + nx^2$.
- **36)** L'hérédité se montre facilement pour $n \ge 1$, et on vérifie la propriété aux rangs 0 et 1.
- **37)** On remarque que $3^{n+1} 2^{n+1} = 3^n + 2(3^n 2^n)$.
- 38) $n_0 = 6$, pour l'hérédité on étudie d'abord l'inégalité $2n + 5 \leqslant 2^n$.
- **39)** On montre que $u: x \mapsto e^{-x}$ est dérivable sur \mathbb{R} avec $u'(x) = -e^{-x}$.
- **40)** On remarque que $\cos x = \sin\left(x + \frac{\pi}{2}\right)$.
- 41) On procède par récurrence sur n.
- **42)** On procède par récurrence sur n.

43)
$$u_n = \frac{1}{2^{n+1}-1}$$
.

- **44)** On cherche une formule explicite $u_n = \lambda \times 3^n + \mu$ avec λ, μ indépendants de n.
- **45)** On procède par récurrence forte sur n en remarquant que $3^{n+1} = 3 \times 3^n$ et $2^{n+1} = 2 \times 2^n$.

46)
$$u_n = \frac{3^{n+1} - (-2)^{n+1}}{5}$$
.

47)
$$\frac{61}{20}$$
.

48)
$$(n+1)^2$$
.

49) Pour l'hérédité, on remarque que
$$\sum_{k=1}^{k=n+1} \frac{1}{k(k+1)} = \left(\sum_{k=1}^{k=n} \frac{1}{k(k+1)}\right) + \frac{1}{(n+1)(n+2)}.$$

50) Pour l'hérédité, on remarque que
$$\sum_{k=1}^{k=n+1} k^2 = \left(\sum_{k=1}^{k=n} k^2\right) + (n+1)^2.$$

- **51**) -45.
- **52)** $2^{\frac{n(n+1)}{2}}$.
- **53**) 5.
- **54**) 1.
- **55)** Pour l'hérédité, on remarque que si u est une fonction dérivable ne s'annulant pas alors $\frac{1}{u^n}$ est aussi dérivable avec $\left(\frac{1}{u^n}\right)' = \frac{-nu'}{u^{n+1}}$.

56)
$$f^{(n)}(x) = \frac{n!}{(1-x)^{n+1}}$$
.

- 57) Pour l'hérédité, on remarque pour la minoration que $n+2 \ge n+1$.
- **58)** (n+1)!-1.
- **59**) 2500.
- **60**) $\frac{1023}{1024}$.
- **61**) $\frac{1}{3} (2^{2n+3} 2)$.

- **62)** $2^{[(n+1)^2]}$.
- **63)** f([-2;0]) = [-1;1] et $f^{-1}([-1;1]) = [-2;1]$.
- **64)** f([-2;2]) = [-7;20] et $f^{-1}([-7;20]) = \left[-\frac{7}{2};\frac{5}{2}\right]$.
- **65)** f n'est pas surjective et f est injective.
- **66)** On étudie les variations de la fonction f sur l'intervalle [-1;1].
- **67)** On résout l'équation f(x;y) = (a;b).
- **68)** On résout l'équation f(m) = f(n) dans les cas où m et n sont ou ne sont pas de même parité.
- **69)** On calcule f(2k) et f(2k-1) pour $k \in \mathbb{N}$.
- **70)** Card(E) = 6.
- 71) On montre par récurrences que $n^3 \le 2^n$ pour $n \ge 10$ en prouvant d'abord $6n+6 \le 2^n$ et $3n^2+3n+1 \le 2^n$.
- **72**) 6
- **73)** $0 \text{ si } p > n \text{ et } \frac{n!}{(n-p)!} \text{ sinon.}$
- **74)** $7 + \binom{7}{2} = 28$ dominos.
- **75)** 121 et 55.
- **76)** $\begin{pmatrix} 4 \\ 4 \end{pmatrix} \begin{pmatrix} 28 \\ 1 \end{pmatrix} + \begin{pmatrix} 4 \\ 3 \end{pmatrix} \begin{pmatrix} 28 \\ 2 \end{pmatrix} = 1540.$
- 77) $\frac{13\times48}{\binom{52}{5}} = \frac{13\times48\times1\times2\times3\times4\times5}{52\times51\times50\times49\times48} = \frac{1}{17\times5\times49} = \frac{1}{4165}$
- **78)** $720 = 2^4 \times 3^2 \times 5$ admet $5 \times 3 \times 2 = 30$ diviseurs.
- **79)** 1. (2n)!: on place d'abord un individu sur une place donnée puis les autres successivement en tournant autour de la table.
 - 2. $2(n!)^2 : 2n \times n \times (n-1) \times (n-1) \times (n-2) \times (n-2) \dots$
 - 3. $2^{n+1}n!$ si n > 1 et 2 si n = 1: une fois placé le premier individu, il y a deux façons de placer son conjoint si n > 1, pour les couples suivants il n'y a qu'une façon de placer le conjoint.
 - 4. 4n! si n > 1 et 2 si n = 1.
- **80**) 233.
- **81)** $n \text{ et } \frac{n(n-1)}{2}.$
- **82)** La somme vaut $f'(0) = n2^{n-1}$.
- **83)** $M^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$.
- **84)** $M^n = \begin{pmatrix} 1 & 2n & n(2n+1) \\ 0 & 1 & & 2n \\ 0 & 0 & & 1 \end{pmatrix}$.