IX. Suites

1 Suites réelles

Définition 1. On appelle suite de nombres réels une application $u: \mathbb{N} \to \mathbb{R}$. $n \mapsto u(n) = u_n$

Exercice 1. Calculer les premiers termes de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} u_0 = 1 \\ u_{n+1} = 1 - \frac{u_n}{2}, n \in \mathbb{N} \end{cases}$ puis la représenter graphiquement.

Définition 2. Une suite réelle $(u_n)_{n\in\mathbb{N}}$ est dite :

- majorée s'il existe un nombre réel M tel que pour tout $n \in \mathbb{N}$ on a $u_n \leq M$, on dit alors que M est un majorant de la suite $(u_n)_{n \in \mathbb{N}}$.
- minorée s'il existe un nombre réel m tel que pour tout $n \in \mathbb{N}$ on a $u_n \geqslant m$, on dit alors que m est un minorant de la suite $(u_n)_{n \in \mathbb{N}}$.
- bornée si elle est à la fois majorée et minorée.

Exercice 2. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} u_0 = 1 \\ u_{n+1} = 1 - \frac{u_n}{2}, n \in \mathbb{N} \end{cases}$ est bornée.

Définition 3. Opérations sur les suites

Etant données deux suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ ainsi qu'un nombre réel λ , on note:

- $(u_n) + (v_n)$ la suite de terme général $u_n + v_n$.
- $\lambda(u_n)$ la suite de terme général λu_n .
- $(u_n) \times (v_n)$ la suite de terme général $u_n \times v_n$.

Remarque 1. On peut étendre la définition à la différence et au quotient si la suite au dénominateur ne s'annule pas.

Exercice 3. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} u_0 = 1 \\ u_{n+1} = 1 - \frac{u_n}{2}, n \in \mathbb{N} \end{cases}$, la suite $(v_n)_{n\in\mathbb{N}}$

définie par $\begin{cases} v_0 = -1 \\ v_{n+1} = 1 - \frac{v_n}{2}, n \in \mathbb{N} \end{cases}$ ainsi que la suite $(w_n) = (u_n) - (v_n)$.

- Calculer les premiers termes des suites $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$.
- Montrer que la suite $(w_n)_{n\in\mathbb{N}}$ est géométrique.

Définition 4. Étant données deux suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$, on note $(u_n) \leqslant (v_n)$ si pour tout $n\in\mathbb{N}$ on a $u_n \leqslant v_n$.

Exercice 4. Comparer les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par $u_n=\frac{n+7}{n+1}$ et $v_n=\frac{2}{n+2}$ pour tout $n\in\mathbb{N}$.

Définition 5. Sens de variation d'une suite

Une suite $(u_n)_{n\in\mathbb{N}}$ est dite :

- constante si pour tout $n \in \mathbb{N}$ on a $u_{n+1} = u_n$.
- croissante (strictement croissante) si pour tout $n \in \mathbb{N}$ on a $u_{n+1} \geqslant u_n$ ($u_{n+1} > u_n$).
- **décroissante** (strictement décroissante) si pour tout $n \in \mathbb{N}$ on a $u_{n+1} \leqslant u_n$ ($u_{n+1} < u_n$).
- monotone si elle est croissante ou décroissante.

Propriété 1. Une suite $(u_n)_{n\in\mathbb{N}}$ est croissante si et seulement si pour tout $n\in\mathbb{N}$ on a $u_{n+1}-u_n\geqslant 0$ et décroissante si et seulement si pour tout $n\in\mathbb{N}$ on a $u_{n+1}-u_n\leqslant 0$.

Exercice 5. Déterminer le sens de variation de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=3n^2-2n+1$ pour tout $n\in\mathbb{N}$ en étudiant le signe de la différence $u_{n+1}-u_n$.

Propriété 2. On considère une suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n = f(n)$ pour tout $n \in \mathbb{N}$ où f est une fonction définie sur $[0; +\infty[$ alors si f est croissante sur $[0; +\infty[$ la suite $(u_n)_{n\in\mathbb{N}}$ est croissante et si f est décroissante sur $[0; +\infty[$ la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.

Exercice 6. Déterminer le sens de variation de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=3n^2-2n+1$ pour tout $n\in\mathbb{N}$ en étudiant les variations de la fonction $f:x\mapsto 3x^2-2x+1$ sur l'intervalle $[0;+\infty[$.

Propriété 3. Une suite $(u_n)_{n\in\mathbb{N}}$ strictement positive est croissante si et seulement si pour tout $n\in\mathbb{N}$ on a $\frac{u_{n+1}}{u_n}\geqslant 1$ et décroissante si et seulement si pour tout $n\in\mathbb{N}$ on a $\frac{u_{n+1}}{u_n}\leqslant 1$.

Exercice 7. Déterminer le sens de variation de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n = \frac{1}{n!}$ pour tout $n\in\mathbb{N}$ en comparant le quotient $\frac{u_{n+1}}{u_n}$ à 1.

Propriété 4. Une suite $(u_n)_{n\in\mathbb{N}}$ à valeurs dans un intervalle I définie par la relation de récurrence $u_{n+1} = f(u_n)$ où f est une fonction définie et croissante sur I est :

- constante si $u_0 = u_1$,
- croissante si $u_0 < u_1$,
- décroissante si $u_0 > u_1$.

Remarque 2. Le sens de variation d'une suite définie par la relation de récurrence $u_{n+1} = f(u_n)$ avec f croissante est déterminé par l'ordre de ses deux premiers termes.

Exercice 8. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} u_0 = 0 \\ u_{n+1} = 3u_n + 2, n \in \mathbb{N} \end{cases}$.

- Calculer les premiers termes de la suite $(u_n)_{n\in\mathbb{N}}$.
- Déterminer le sens de variation de la suite $(u_n)_{n\in\mathbb{N}}$.

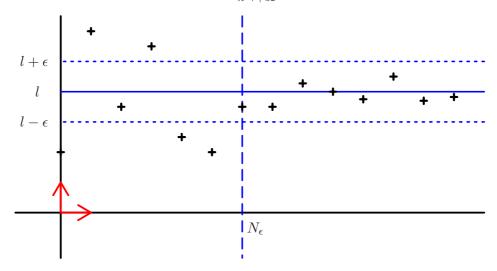
Exercice 9. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{u_n^2 + 1}{2}, n \in \mathbb{N} \end{cases}$

- Calculer les premiers termes de la suite $(u_n)_{n\in\mathbb{N}}$.
- Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est positive.
- Déterminer le sens de variation de la suite $(u_n)_{n\in\mathbb{N}}$.

2 Limite d'une suite

Définition 6. Limite finie

Une suite réelle $(u_n)_{n\in\mathbb{N}}$ admet une limite $l\in\mathbb{R}$ si pour tout réel $\epsilon>0$ il existe un rang $N_{\epsilon}\in\mathbb{N}$ tel que pour tout $n\geqslant N_{\epsilon}$ on a $l-\epsilon\leqslant u_n\leqslant l+\epsilon$, on note $\lim_{n\to+\infty}u_n=l$.



Remarque 3. $l - \epsilon \leqslant u_n \leqslant l + \epsilon \Leftrightarrow |u_n - l| \leqslant \epsilon$.

Exercice 10. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n = \frac{n}{n+1}$ pour tout $n\in\mathbb{N}$ admet 1 pour limite. (on pourra procéder par résolution de l'inéquation $|u_n-1| \le \epsilon$ d'inconnue n)

Propriété 5. Si une suite admet une limite finie celle-ci est nécessairement unique.

Propriété 6. Une suite réelle $(u_n)_{n\in\mathbb{N}}$ admet une limite $l\in\mathbb{R}$ si et seulement si la suite $(u_n-l)_{n\in\mathbb{N}}$ admet pour limite 0.

Propriété 7. Une suite réelle $(u_n)_{n\in\mathbb{N}}$ admet pour limite 0 si et seulement si la suite $(|u_n|)_{n\in\mathbb{N}}$ admet pour limite 0.

Définition 7. Une suite admettant une limite finie est dite **convergente**, une suite n'admettant pas de limite finie est dite **divergente**.

Exemple 1. La suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=n^2$ pour tout $n\in\mathbb{N}$ et la suite $(v_n)_{n\in\mathbb{N}}$ définie par $v_n=(-1)^n$ pour tout $n\in\mathbb{N}$ sont divergentes.

Propriété 8. Toute suite réelle convergente est bornée.

Contre-exemple 1. La suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=(-1)^n$ pour tout $n\in\mathbb{N}$ est bornée et n'est pas convergente.

Définition 8. On appelle suite extraite d'une suite réelle $(u_n)_{n\in\mathbb{N}}$, une suite $(u_{\varphi(n)})_{n\in\mathbb{N}}$ où φ est une application strictement croissante de \mathbb{N} dans \mathbb{N} .

Exercice 11. Montrer que la suite des entiers pairs et la suite des entiers impairs sont des suites extraites de la suite des entiers naturels.

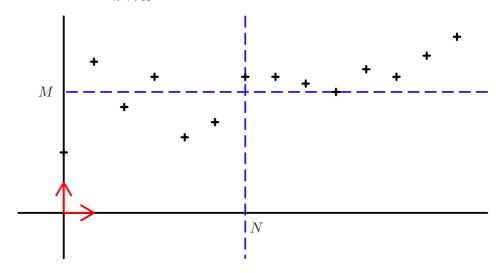
Propriété 9. Si une suite réelle converge vers une limite finie alors toute suite extraite de celle-ci converge vers la même limite.

Exercice 12. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n = \sin\left(\frac{n\pi}{4}\right)$ pour tout $n\in\mathbb{N}$ est divergente. (on pourra considérer les suites $(u_{4n})_{n\in\mathbb{N}}$ et $(u_{8n+2})_{n\in\mathbb{N}}$)

Définition 9. Limite infinie

Une suite réelle $(u_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$ si pour tout réel M il existe un rang $N\in\mathbb{N}$ tel que pour tout $n\geqslant N$ on a $u_n\geqslant M$, on note $\lim_{n\to+\infty}u_n=+\infty$.

Une suite réelle $(u_n)_{n\in\mathbb{N}}$ diverge vers $-\infty$ si pour tout réel M il existe un rang $N\in\mathbb{N}$ tel que pour tout $n\geqslant N$ on a $u_n\leqslant M$, on note $\lim_{n\to+\infty}u_n=-\infty$.



Remarque 4. Le rang N dépend du M choisi.

Exercice 13. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=n^2+1$ pour tout $n\in\mathbb{N}$ diverge vers $+\infty$. (on pourra procéder par résolution de l'équation $u_n\geqslant M$ d'inconnue n)

Propriété 10. Une suite réelle $(u_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$ si et seulement si la suite réelle $(-u_n)_{n\in\mathbb{N}}$ diverge vers $-\infty$.

Propriété 11. Limites d'une suite arithmétique

On considère une suite arithmétique de raison r, alors :

- $si \ r > 0$ la suite diverge $vers + \infty$.
- $si \ r < 0$ la suite diverge $vers -\infty$.

Propriété 12. Limites d'une suite géométrique

On considère une suite géométrique de raison r, alors :

- si |r| < 1 la suite converge vers 0.
- $si \ r > 1$ et $u_0 > 0$ la suite diverge $vers + \infty$.
- $si \ r > 1$ et $u_0 < 0$ la suite diverge $vers \infty$.

Exercice 14. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=\frac{1}{1}+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^n}$ pour tout $n\in\mathbb{N}$.

- Calculer les premiers termes de la suite $(u_n)_{n\in\mathbb{N}}$.
- Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente et déterminer sa limite.

3 Opérations sur les limites, comparaison des limites

Propriété 13. Limites et opérations

On considère deux suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ qui convergent respectivement vers les limites finies l_1 et l_2 , alors :

- la suite $(u_n) + (v_n)$ converge vers $l_1 + l_2$.
- la suite $(u_n) \times (v_n)$ converge vers $l_1 \times l_2$.

Remarque 5. On peut étendre la propriété à la différence et au quotient si la suite au dénominateur ne s'annule pas et converge vers une limite non nulle.

Exercice 15. On considère une suite $(u_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence $u_{n+1} = \frac{u_n^2 + 1}{2}$ pour tout $n \in \mathbb{N}$. Si la suite $(u_n)_{n\in\mathbb{N}}$ converge, que peut-on dire de sa limite l?

Propriété 14. On considère une suite réelle $(u_n)_{n\in\mathbb{N}}$ qui converge vers une limite finie l et une suite réelle $(v_n)_{n\in\mathbb{N}}$ qui diverge vers $+\infty$, alors :

- la suite $(u_n) + (v_n)$ diverge vers $+\infty$.
- la suite $(u_n) \times (v_n)$ diverge vers $+\infty$ si l > 0 et vers $-\infty$ si l < 0.

Propriété 15. On considère deux suites rélles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ qui divergent vers $+\infty$, alors :

- la suite $(u_n) + (v_n)$ diverge vers $+\infty$.
- la suite $(u_n) \times (v_n)$ diverge vers $+\infty$.

Exercice 16. Déterminer la limite de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=(1-n!)(n^2-n+1)$ pour tout $n\in\mathbb{N}$.

Propriété 16. On considère une suite réelle $(u_n)_{n\in\mathbb{N}}$ ne s'annulant pas qui diverge vers $+\infty$ alors la suite $\left(\frac{1}{u_n}\right)_{n\in\mathbb{N}}$ converge vers 0.

Propriété 17. On considère une suite réelle $(u_n)_{n\in\mathbb{N}}$ strictement positive qui converge vers 0 alors la suite $\left(\frac{1}{u_n}\right)_{n\in\mathbb{N}}$ diverge vers $+\infty$.

Remarque 6. On peut également énoncer une propriété dans le cas ou la suite est strictement négative.

Contre-exemple 2. La suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=\frac{(-1)^n}{n+1}$ pour tout $n\in\mathbb{N}$ converge vers 0 mais la suite $\left(\frac{1}{u_n}\right)_{n\in\mathbb{N}}$ n'admet pas de limite infinie.

Propriété 18. On considère deux suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ avec $u_n \leq v_n$ pour tout $n\in\mathbb{N}$ qui convergent respectivement vers les limites finies l_1 et l_2 , alors $l_1 \leq l_2$.

Exercice 17. On considère les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par $u_n=1-\frac{1}{n+1}$ et $v_n=1+\frac{1}{n+1}$ pour tout $n\in\mathbb{N}$.

Montrer que $u_n < v_n$ pour tout $n \in \mathbb{N}$ et que les suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ convergent vers la même limite.

4 Théorèmes d'existence de limites

Théorème 1. Théorème d'encadrement

On considère trois suites réelles $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$, alors :

- $si\ u_n \leqslant v_n \leqslant w_n$ pour tout $n \in \mathbb{N}$ et que les suites $(u_n)_{n \in \mathbb{N}}$ et $(w_n)_{n \in \mathbb{N}}$ convergent vers l alors la suite $(v_n)_{n \in \mathbb{N}}$ converge vers l.
- $si\ u_n \leqslant v_n\ pour\ tout\ n \in \mathbb{N}$ et que la suite $(u_n)_{n \in \mathbb{N}}$ diverge $vers + \infty$ alors la suite $(v_n)_{n \in \mathbb{N}}$ diverge $vers + \infty$.
- $si\ u_n \leqslant v_n\ pour\ tout\ n \in \mathbb{N}$ et que la suite $(v_n)_{n \in \mathbb{N}}$ diverge vers $-\infty$ alors la suite $(u_n)_{n \in \mathbb{N}}$ diverge $vers\ -\infty$.

Exercice 18. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=n!$ pour tout $n\in\mathbb{N}$ diverge vers $+\infty$. (on pourra comparer la suite à une suite géométrique)

Corollaire 1. On considère deux suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$, si la suite $(u_n)_{n\in\mathbb{N}}$ est bornée et que la suite $(v_n)_{n\in\mathbb{N}}$ converge vers 0 alors la suite $(u_nv_n)_{n\in\mathbb{N}}$ converge vers 0.

Exercice 19. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n = \frac{\sin n}{n+1}$ pour tout $n\in\mathbb{N}$ converge vers 0.

Théorème 2. Théorème de convergence monotone

On considère une suite réelle croissante, alors :

- si la suite n'est pas majorée elle diverge vers $+\infty$.
- si la suite est majorée elle converge vers son plus petit majorant.

Exercice 20. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{u_n^2 + 1}{2}, n \in \mathbb{N} \end{cases}$

- Calculer les premiers termes de la suite $(u_n)_{n\in\mathbb{N}}$.
- Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est positive.
- Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.
- Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est majorée par 1.
- En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente et déterminer sa limite.

Corollaire 2. On considère une suite réelle décroissante, alors :

- si la suite n'est pas minorée elle diverge vers $-\infty$.
- si la suite est minorée elle converge vers son plus grand minorant.

Définition 10. On appelle suites adjacentes deux suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telles que $(u_n)_{n\in\mathbb{N}}$ est croissante, $(v_n)_{n\in\mathbb{N}}$ est décroissante et $(v_n-u_n)_{n\in\mathbb{N}}$ converge vers 0.

Exercice 21. On considère les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par $u_n=1-\frac{1}{n+1}$ et $v_n=1+\frac{1}{n+1}$ pour tout $n\in\mathbb{N}$.

- Calculer puis représenter graphiquement les premiers termes des suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$.
- Montrer que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes.

Propriété 19. Si deux suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont adjacentes avec $(u_n)_{n\in\mathbb{N}}$ croissante et $(v_n)_{n\in\mathbb{N}}$ décroissante, alors $u_n \leq v_n$ pour tout $n\in\mathbb{N}$.

Théorème 3. Deux suites adjacentes convergent vers la même limite.

5 Relations de comparaison

Définition 11. On considère deux suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ ne s'annulant pas à partir d'un certain rang, on dit que :

- la suite $(u_n)_{n\in\mathbb{N}}$ est négligeable devant la suite $(v_n)_{n\in\mathbb{N}}$ si la suite $\left(\frac{u_n}{v_n}\right)_{n\in\mathbb{N}}$ converge vers 0, on note alors $u_n = o(v_n)$.
- la suite $(u_n)_{n\in\mathbb{N}}$ est équivalente à la suite $(v_n)_{n\in\mathbb{N}}$ si la suite $\left(\frac{u_n}{v_n}\right)_{n\in\mathbb{N}}$ converge vers 1, on note alors $u_n \sim v_n$
- la suite $(u_n)_{n\in\mathbb{N}}$ est dominée par la suite $(v_n)_{n\in\mathbb{N}}$ si la suite $\left(\frac{u_n}{v_n}\right)_{n\in\mathbb{N}}$ est bornée, on note alors $u_n = O(v_n)$

Exemple 2. $n = o(n^2), n + 1 \sim n \text{ et } n \sin n = O(n).$

Propriété 20. Si $u_n = o(v_n)$ ou $u_n \sim v_n$ alors $u_n = O(v_n)$.

Propriété 21. $u_n \sim v_n$ équivaut à $u_n - v_n = o(v_n)$.

Exercice 22. Que signifie pour une suite réelle $(u_n)_{n\in\mathbb{N}}$ que $u_n=o(1)$ ou que $u_n\sim 1$?

Propriété 22. On considère trois suites réelles $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$:

- $si \ u_n \sim v_n \ alors \ v_n \sim u_n$. (symétrie)
- $si \ u_n \sim v_n \ et \ v_n \sim w_n \ alors \ u_n \sim w_n$. (transitivité)

Propriété 23. Équivalent d'un produit et d'un quotient

On considère quatre suites réelles $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$, $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ avec $u_n \sim a_n$ et $v_n \sim b_n$ alors $u_nv_n \sim a_nb_n$ et $\frac{u_n}{v_n} \sim \frac{a_n}{b_n}$.

Exercice 23. Déterminer la limite de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=\frac{2n^2-1}{n^2+n+1}$ pour tout $n\in\mathbb{N}$ en utilisant les équivalents.

Exercice 24. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=1+n$ pour tout $n\in\mathbb{N}$ et la suite $(v_n)_{n\in\mathbb{N}}$ définie par $v_n=1-n$ pour tout $n\in\mathbb{N}$. Montrer que $u_n\sim 1+n$ et $v_n\sim -n$ mais que $u_n+v_n\nsim 1$.

Propriété 24. Comparaison des suites de référence

On considère $a, r \in \mathbb{R}_+^*$, alors :

- $\ln n = o(n^a)$
- $n^a = o(r^n) \text{ si } r > 1.$
- $r^n = o(n!)$ si r > 1.

Exercice 25. Déterminer un équivalent de la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_n=\frac{n^2-2\ln n}{n^2-2^n}$ pour tout $n\in\mathbb{N}^*$.

Exercices supplémentaires

Exercice 26

Montrer qu'il existe une unique suite arithmétique $(u_n)_{n\in\mathbb{N}}$ telle que $u_7=6,8$ et $u_{19}=23,6$. Déterminer alors u_{53} .

Exercice 27

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=\frac{3^n}{2^{n+1}}$ pour tout $n\in\mathbb{N}$ est géométrique. Déterminer $\sum_{k=0}^{k=n}u_k$.

Exercice 28 (**)

Montrer qu'une suite $(u_n)_{n\in\mathbb{N}}$ est arithmétique si et seulement si pour tout $n\in\mathbb{N}$ on a $u_{n+1}=\frac{u_n+u_{n+2}}{2}$.

Exercice 29 $(\star\star)$

Montrer qu'une suite $(u_n)_{n\in\mathbb{N}}$ strictement positive est géométrique si et seulement si pour tout $n\in\mathbb{N}$ on a $u_{n+1}=\sqrt{u_nu_{n+2}}$.

Exercice 30 (\star)

Déterminer une forme explicite de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} u_0 &= 1\\ u_n &= \sum_{k=0}^{k=n-1} u_k , n \in \mathbb{N}^* \end{cases}$

Exercice 31

Calculer les premiers termes de la suite $\begin{cases} u_0 &= 0 \\ u_1 &= 1 \\ u_{n+2} &= \frac{u_n + u_{n+1}}{2} , \ n \in \mathbb{N} \end{cases}$ puis la représenter graphiquement.

Exercice 32

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n = \frac{n}{n^2 + 1}$ pour tout $n \in \mathbb{N}$ est bornée.

Exercice 33

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{u_n+1}{6}, n\in\mathbb{N} \end{cases}$ est bornée.

Exercice 34

Montrer que la suite $\begin{cases} u_0 &= 0 \\ u_1 &= 1 \\ u_{n+2} &= \frac{u_n + u_{n+1}}{2}, n \in \mathbb{N} \end{cases}$ est bornée.

Exercice 35 (\star)

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} u_0 = -1 \\ u_{n+1} = \sqrt{2-u_n}, n\in\mathbb{N} \end{cases}$ est bornée.

Exercice 36 (**)

Montrer que la suite
$$(u_n)_{n\in\mathbb{N}}$$
 définie par
$$\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{u_n+1}{u_n^2+1}, n \in \mathbb{N} \end{cases}$$
 est bornée.

Exercice 37

Comparer les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par $u_n=\frac{2^n}{3^n}$ et $v_n=\frac{2^n+1}{3^n+1}$ pour tout $n\in\mathbb{N}$.

Exercice 38 (\star)

Comparer les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par $u_n=n$ et $v_n=\ln(n+1)$ pour tout $n\in\mathbb{N}$.

Exercice 39

Étudier le sens de variation de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=n-\sqrt{n}$ pour tout $n\in\mathbb{N}$.

Exercice 40

Étudier le sens de variation de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=\frac{2^n+n}{3^n}$ pour tout $n\in\mathbb{N}$.

Exercice 41

Étudier le sens de variation de la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_n=\frac{n^2}{4^n}$ pour tout $n\in\mathbb{N}^*$.

Exercice 42

Étudier le sens de variation de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} u_0 = 1 \\ u_{n+1} = \sqrt{1+u_n}, n\in\mathbb{N} \end{cases}$

Exercice 43 (\star)

Déterminer le sens de variation de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{u_n(u_n^3 + 3)}{u_n^2 + 1}, n \in \mathbb{N} \end{cases}$

Exercice 44 (*)

Déterminer en fonction de u_0 le sens de variation de la suite $(u_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence $u_{n+1} = \frac{u_n+1}{2}$ pour tout $n\in\mathbb{N}$.

Exercice 45 (**)

On considère une suite $(u_n)_{n\in\mathbb{N}}$ à valeurs dans un intervalle I définie par la relation de récurrence $u_{n+1}=f(u_n)$ où f est une fonction définie et décroissante sur I.

Montrer que les suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont monotones.

Exercice 46

En utilisant la définition de la limite d'une suite avec un ϵ bien choisi, montrer qu'une suite $(u_n)_{n\in\mathbb{N}}$ admettant 1 pour limite est positive à partir d'un certain rang.

Exercice 47 (**)

On considère une suite $(u_n)_{n\in\mathbb{N}}$ à termes strictement positifs tels que la suite $\left(\frac{u_{n+1}}{u_n}\right)_{n\in\mathbb{N}}$ admette $\frac{1}{3}$ pour limite. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers 0.

Exercice 48

Montrer que la suite des puissances de huit (d'exposants positifs) est une suite extraite de la suite des puissances de deux.

Exercice 49

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n = \frac{1-2^n}{1+(-2)^n}$ pour tout $n\in\mathbb{N}$ est divergente.

Exercice 50 (**)

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=\cos n$ pour tout $n\in\mathbb{N}$ est divergente.

Exercice 51 $(\star\star)$

Montrer que si les suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers une même limite l alors la suite $(u_n)_{n\in\mathbb{N}}$ converge aussi vers l.

Exercice 52

En utilisant la définition de la limite d'une suite, montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=\sqrt{n}$ pour tout $n\in\mathbb{N}$ diverge vers $+\infty$.

Exercice 53

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n = \frac{2^n}{3^{2n+1}}$ pour tout $n\in\mathbb{N}$ est convergente et déterminer sa limite.

Exercice 54

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=(n+1)2^{n+1}-n2^n$ pour tout $n\in\mathbb{N}$ est convergente et déterminer sa limite.

Exercice 55

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n = \frac{3^n - 2^n}{3^n + 2^n}$ pour tout $n \in \mathbb{N}$ est convergente et déterminer sa limite.

Exercice 56

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=n-\sin n$ pour tout $n\in\mathbb{N}$ diverge vers $+\infty$.

Exercice 57

Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_n = \frac{\sin n + \cos n}{\sqrt{n}}$ pour tout $n\in\mathbb{N}^*$ converge vers 0.

Exercice 58 (\star)

Étudier la convergence de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n = \frac{\lfloor \pi \times 10^n \rfloor}{10^n}$ pour tout $n \in \mathbb{N}$.

Exercice 59 (*)

Étudier la convergence de la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_n = \frac{(n-1)\sin(n+1) - (n+1)\sin(n-1)}{n}$ pour

Exercice 60 $(\star\star)$

Démontrer que $x \ge \ln(1+x)$ pour $x \ge 0$, en déduire que la suite $(u_n)_{n \in \mathbb{N}^*}$ définie par $u_n = \sum_{k=1}^{\kappa=n} \frac{1}{k}$ pour tout $n \in \mathbb{N}^*$ diverge vers $+\infty$.

Exercice 61

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} u_0 = 2 \\ u_{n+1} = \sqrt{u_n}, n \in \mathbb{N} \end{cases}$. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est bornée et décroissante, en déduire qu'elle converge et déterminer sa

limite.

Exercice 62 (\star)

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} u_0 &= 1 \\ u_{n+1} &= 3 - \frac{1}{u_n}, n \in \mathbb{N} \end{cases}$

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est bornée et croissante, en déduire qu'elle converge et déterminer sa limite.

Exercice 63 $(\star\star)$

On considère la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_n=\sum_{k=1}^{k=n}\frac{1}{k^2}$ pour tout $n\in\mathbb{N}^*$. Démontrer que $0\leqslant u_n\leqslant 2-\frac{1}{n}$ pour tout $n \in \mathbb{N}^*$, en déduire que la suite $(u_n)_{n \in \mathbb{N}^*}$ converge et donner un encadrement de sa limite.

Exercice 64 $(\star\star)$

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n = \sum_{k=0}^{k=n} \frac{1}{k!}$ pour tout $n \in \mathbb{N}$ est convergente et donner un encadrement de sa limite.

Exercice 65

On considère la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_n=\frac{1}{n}+\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}$ pour tout $n\in\mathbb{N}^*$ ainsi que la suite $(v_n)_{n\in\mathbb{N}^*}$ définie par $v_n=\frac{1}{n+1}+\frac{1}{n+2}+\frac{1}{n+3}+\cdots+\frac{1}{2n}$ pour tout $n\in\mathbb{N}^*$. Montrer que les suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ sont adjacentes.

Exercice 66 (*)

Montrer que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par $u_n = \frac{1}{(n+1)!} + \sum_{k=0}^{k=n} \frac{1}{k!}$ et $v_n = \frac{2}{(n+1)!} + \sum_{k=0}^{k=n} \frac{1}{k!}$ pour tout $n \in \mathbb{N}$ sont adjacentes, en déduire qu'elles convergent vers une même limite $l \in [2; 3]$.

Exercice 67 (**)

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n = \sum_{k=0}^{k=n} \frac{(-1)^k}{k+1}$ pour tout $n\in\mathbb{N}$ est convergente.

Exercice 68

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=\sqrt{(n+1)(n+2)}$ pour tout $n\in\mathbb{N}$, montrer que $u_n\sim n$.

Exercice 69

Montrer que n = o(n!).

Exercice 70 (\star)

Que penser de la notation $u_n = o(o(v_n))$?

Exercice 71 (\star)

Déterminer $\alpha, \beta \in \mathbb{R}$ tels que $\frac{2n^2+1}{n^2+n+1} = \alpha + \frac{\beta}{n} + o\left(\frac{1}{n}\right)$.

Exercice 72 (*)

Déterminer un équivalent simple de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n = \sqrt{n^2 + 1} - n$ pour tout $n \in \mathbb{N}$.

Exercice 73 (\star)

Montrer que
$$\sum_{k=1}^{k=n} k^3 = O(n^4).$$

Exercice 74

Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=\frac{2^n+3n}{3^n-2n}$ pour tout $n\in\mathbb{N}$ est convergente et déterminer sa limite.

Exercice 75

Déterminer un équivalent simple de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n = \frac{4^{n+1} + n^3}{2^n + n}$ pour tout $n\in\mathbb{N}$.

Exercice 76 $(\star\star)$

Déterminer un équivalent simple de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=\sum_{k=0}^{k=n}k!$ pour tout $n\in\mathbb{N}$.

Réponses

- 1) $u_0 = 1$, $u_1 = \frac{1}{2}$, $u_2 = \frac{3}{4}$, $u_3 = \frac{5}{8}$, $u_4 = \frac{11}{16}$.
- 2) On montre que $u_n \in [0;1]$ par récurrence.
- 3) On montre que $(u_{n+1} v_{n+1}) = 2(u_n v_n)$.
- 4) On montre que $u_n v_n = \frac{n+5}{n+1} \geqslant 0$.
- **5)** On montre que $u_{n+1} u_n = 6n + 1 \ge 0$.
- 6) On montre que f est croissante sur $\left[\frac{1}{3}; +\infty\right]$ donc sur $\left[1; +\infty\right]$ et $u_0 \leqslant u_1$.
- 7) $\frac{u_{n+1}}{u_n} = \frac{1}{n+1} < 1.$
- 8) $u_0 = 0$, $u_1 = 2$, $u_2 = 8$, $u_3 = 26$ et $x \mapsto 3x + 2$ est croissante sur \mathbb{R} .
- 9) $u_0 = 0$, $u_1 = \frac{1}{2}$, $u_2 = \frac{5}{8}$, $u_3 = \frac{89}{128}$ et $x \mapsto \frac{x^2 + 1}{2}$ est croissante sur $[0; +\infty[$.
- 10) On considère un entier N_{ϵ} supérieur à $\frac{1}{\epsilon} 1$.
- 11) Pour $u_n = n$, on considère (u_{2n}) et (u_{2n+1}) .
- 12) (u_{4n}) est nulle et (u_{8n+2}) est constante égale à 1 donc ces deux suites ne convergent pas vers la même limite.
- 13) On considère un entier N supérieur à $\sqrt{M-1}$ dans le cas où $M \ge 1$ et N=0 sinon.
- **14)** $u_n = 1 \left(\frac{1}{2}\right)^n$ donc la suite converge vers 1.
- **15)** On a $l = \frac{l^2 + 1}{2}$ donc l = 1.
- **16)** $\lim u_n = +\infty$.
- 17) $v_n u_n = \frac{2}{n+1} > 0$ et les deux suites convergent vers 1.
- **18)** On montre que $u_n \geqslant 2^{n-1}$.
- **19)** On remarque que $u_n = \sin n \times \frac{1}{n+1}$
- 20) On utilise les exercices 9 et 15, la suite est croissante majorée donc elle converge vers l=1.
- **21)** $u_{n+1} u_n = \frac{1}{(n+1)(n+2)} \ge 0$, $v_{n+1} v_n = \frac{-1}{(n+1)(n+2)} \le 0$ et $v_n u_n = \frac{2}{n+1} \to 0$.
- **22)** (u_n) converge vers 0 et (u_n) converge vers 1.
- **23)** $2n^2 1 \sim 2n^2$ et $n^2 + n + 1 \sim n^2$ donc $u_n \sim 2n^2$
- **24)** On remarque que $\frac{u_n}{n+1} = 1$, $\frac{v_n}{-n} = 1 \frac{1}{n}$ et $u_n + v_n = 2$.
- **25)** $n^2 2 \ln n \sim n^2$ et $n^2 2^n \sim -2^n$ donc $u_n \sim -\frac{n^2}{2^n}$.
- **26)** La suite est nécessairement la suite de raison $r = \frac{u_{19} u_7}{19 7} = 1,4$ et de premier terme $u_0 = u_7 7r = -3$ d'où $u_{53} = -3 + 53r = 71,2$.
- **27)** $\frac{u_{n+1}}{u_n} = \frac{3}{2} \text{ et } \sum_{k=0}^{k=n} u_k = \left(\frac{3}{2}\right)^{n+1} 1.$
- 28) Pour la réciproque, on montre que $u_{n+1} u_n$ est une constante.
- **29)** Pour la réciproque, on montre que $\frac{u_{n+1}}{u_n}$ est une constante.

- **30)** On montre par récurrence que $u_n = 2^{n-1}$ pour $n \in \mathbb{N}^*$.
- **31)** $u_0 = 0$, $u_1 = 1$, $u_2 = \frac{1}{2}$, $u_3 = \frac{3}{4}$, $u_4 = \frac{5}{8}$, $u_5 = \frac{11}{16}$.
- **32)** $u_n \in [0;1].$
- **33)** $u_n \in [0;1].$
- **34)** $u_n \in [0;1].$
- **35)** $u_n \in [-1; 2].$
- **36)** $u_n \in [0; 2].$
- **37)** $u_n \leqslant v_n \text{ car } v_n u_n = \frac{3^n 2^n}{3^n (3^n + 1)} \geqslant 0.$
- **38)** On montre que $u_n \geqslant v_n$ par étude de fonction auxiliaire.
- **39)** La suite est croissante car $u_0 = u_1$ et $f: x \mapsto x \sqrt{x}$ est croissante sur $[1; +\infty[$.
- **40)** On a $u_{n+1} u_n = \frac{1 2n 2^n}{3^{n+1}} \le 0$.
- **41)** La suite est décroissante à partir du rang 1 car $u_{n+1} u_n = \frac{(n-1)(1-3n)}{4^{n+1}}$.
- **42)** La suite est positive et croissante car $u_0 \le u_1$ et $f: x \mapsto \sqrt{1+x}$ est croissante sur $[0; +\infty[$.
- **43)** On montre que $u_{n+1} u_n \geqslant 0$.
- 44) La suite est constante si $u_0 = 1$, strictement décroissante si $u_0 > 1$ et strictement croissante si $u_0 < 1$.
- **45)** On montre que $f \circ f$ est croissante sur I.
- **46)** On choisit $\epsilon = \frac{1}{2}$.
- **47)** On utilise la définition de la limite avec $\epsilon = \frac{1}{6}$ et on montre que pour $n \geqslant N$ on a $0 \leqslant u_n \leqslant \frac{u_N}{2^{n-N}}$.
- **48)** On pose $u_n = 2^n$ et on considère $(u_{3n})_{n \in \mathbb{N}}$.
- **49)** On considère les suites extraites (u_{2n}) et (u_{2n+1}) .
- **50)** On considère les suites (u_{2n}) et $(u_{n+1}) + (u_{n-1})$.
- **51)** On utilise la définition de la limite d'une suite avec $\epsilon_1 = \epsilon_2 = \epsilon$ et on prend $N_{\epsilon} = 2\max(N_{\epsilon_1}, N_{\epsilon_2})$.
- **52)** On pose N=0 si $M \leq 0$ et N un entier supérieur à M^2 sinon.
- **53)** On montre que la suite est géométrique de raison $\frac{2}{9}$.
- 54) On montre que la suite diverge vers $+\infty$ après développement et simplification.
- 55) On montre que la suite converge vers 1 en divisant numérateur et dénominateur par 3^n .
- **56)** On montre que $n-1 \leqslant u_n$.
- **57)** On montre que $-\frac{2}{\sqrt{n}} \leqslant u_n \leqslant \frac{2}{\sqrt{n}}$.
- **58)** La suite converge vers π car $\pi 10^{-n} < u_n \leqslant \pi$ pour tout $n \in \mathbb{N}$.
- **59)** La suite diverge car $u_n = 2\sin 1\cos n \frac{2\cos 1\sin n}{n}$.
- **60)** On remarque que $u_n \geqslant \sum_{k=1}^{k=n} \ln(1+k) \ln(k) = \ln(n+1)$ pour tout $n \in \mathbb{N}^*$.
- **61)** D'après le théorème de convergence monotone, la suite converge vers $l \in [1;2]$ avec $l = \sqrt{l}$ donc l = 1.
- **62)** D'après le théorème de convergence monotone, la suite converge vers $l \in [1;4]$ avec $l = 3 \frac{1}{l}$ donc $l = \frac{3+\sqrt{5}}{2}$.
- 63) On procède par récurrence, la suite est croissante majorée par 2 donc elle converge vers $l \in [1; 2]$.

- **64)** En remarquant que $k! \ge 2^{k-1}$ pour tout $k \in \mathbb{N}$, on montre que la suite est croissante positive majorée par 4 donc convergente vers $l \in [0; 4]$.
- **65)** On montre que $u_{n+1} u_n = -\frac{3n+2}{n(2n+1)(2n+2)}$, $v_{n+1} v_n = \frac{1}{(2n+1)(2n+2)}$ et $v_n u_n = -\frac{1}{n}$.
- 66) On montre que les suites sont adjacentes et on remarque que $u_0 = 2$ et $v_0 = 3$.
- **67)** On montre que les suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont adjacentes.
- **68)** On montre que $\frac{u_n}{n} = \sqrt{1 + \frac{3}{n} + \frac{2}{n^2}}$.
- **69)** On remarque que $\frac{n}{n!} = \frac{1}{(n-1)!}$ pour $n \ge 1$.
- **70)** Cette notation est équivalente à la notation $u_n = o(v_n)$.
- 71) $\frac{2n^2+1}{n^2+n+1} = 2 \frac{2}{n} + o\left(\frac{1}{n}\right)$.
- **72)** En utilisant l'expression conjuguée, on obtient $u_n \sim \frac{1}{2n}$.
- **73)** On remarque que $0 \le \frac{1}{n^4} \sum_{k=1}^{k=n} k^3 \le \frac{1}{n^4} \sum_{k=1}^{k=n} n^3 = 1$.
- **74)** La suite converge vers 0.
- **75)** $u_n \sim 2^{n+2}$.
- **76)** En remarquant que $\sum_{k=0}^{k=n-2} k! \leqslant \sum_{k=0}^{k=n-2} (n-2)! = (n-1)!$ on montre que $u_n \sim n!$.