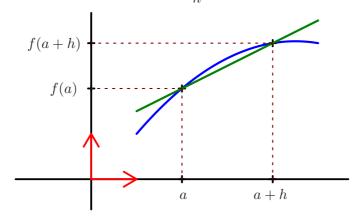
XIII. Dérivation

1 Dérivée d'une fonction

Définition 1. On considère une fonction $f \in \mathcal{F}(I,\mathbb{R})$ et $a \in I$, on appelle taux d'accroissement de la fonction f en a la fonction $\Delta_{f,a} : h \mapsto \frac{f(a+h) - f(a)}{h}$.



 $\Delta_{f,a}(h)$ peut s'interpréter graphiquement comme le coefficient directeur de la droite passant par les points d'abscisses a et a+h de la courbe représentative de la fonction f.

Définition 2. On considère une fonction $f \in \mathcal{F}(I,\mathbb{R})$ et $a \in I$:

- $si \Delta_{f,a}$ admet une limite finie à droite en 0, on dit que f est dérivable à droite en a et on appelle cette limite nombre dérivé à droite de la fonction f en a que l'on note $f'_d(a)$.
- $si \Delta_{f,a}$ admet une limite finie à gauche en 0, on dit que f est dérivable à gauche en a et on appelle cette limite nombre dérivé à gauche de la fonction f en a que l'on note $f'_q(a)$.
- si $\Delta_{f,a}$ admet une limite finie à droite et une limite finie à gauche en 0 égales, on dit que f est dérivable en a et on appelle cette limite nombre dérivé de la fonction f en a que l'on note f'(a).

Exercice 1. Montrer que la fonction inverse est dérivable en $a \in \mathbb{R}^*$ et calculer son nombre dérivé en a.

Exercice 2. Montrer que pour tout $n \in \mathbb{N}^*$ la fonction $x \mapsto x^n$ est dérivable en tout point de \mathbb{R} .

Exercice 3. Montrer que la fonction valeur absolue est dérivable à droite et à gauche en 0 mais n'est pas dérivable en 0.

Propriété 1. On considère une fonction $f \in \mathcal{F}(I,\mathbb{R})$ dérivable en $a \in I$, alors la courbe représentative de la fonction f admet une tangente au point d'abscisse a d'équation y = f(a) + f'(a)(x - a).

Remarque 1. Dans le cas ou la fonction est dérivable à gauche ou à droite en a sa courbe représentative admet une demi-tangente à gauche ou à droite en a.

Remarque 2. Dans le cas ou le taux d'accroissement de la fonction f en a admet une limite infinie en 0, la courbe représentative de la fonction f admet une tangente verticale au point d'abscisse a.

Définition 3. Une fonction $f \in \mathcal{F}(I,\mathbb{R})$ dérivable en tout point de I est dite dérivable sur I et on appelle **dérivée** de la fonction f la fonction $f': a \mapsto f'(a)$. On note $\mathcal{D}(I,\mathbb{R})$ l'ensemble des fonctions à valeurs réelles définies et dérivables sur I.

On suppose connus les intervalles de dérivabilité ainsi que les dérivées des fonctions usuelles.

Propriété 2. Développement limité d'ordre 1

On considère une fonction $f \in \mathcal{F}(I,\mathbb{R})$ dérivable en $a \in I$, alors :

$$f(x) = f(a) + f'(a)(x - a) + o(x - a)$$

Exercice 4. Déterminer un développement limité d'ordre 1 au voisinage de 0 de $\sin x$, $\sqrt{1+x}$, e^x et $\ln(1+x)$.

Corollaire 1. Une fonction $f \in \mathcal{F}(I,\mathbb{R})$ dérivable en $a \in I$ est continue en a.

Contre-exemple 1. La fonction valeur absolue est continue en 0 mais n'est pas dérivable en 0.

Propriété 3. On considère une fonction $f \in \mathcal{F}(I,\mathbb{R})$ et $a \in I$ pour laquelle il existe $c, d \in \mathbb{R}$ tels que f(x) = c + d(x-a) + o(x-a) alors f(a) = c et f est dérivable en a avec f'(a) = d.

2 Opérations sur les dérivées

Propriété 4. On considère deux fonctions $u, v \in \mathcal{D}(I, \mathbb{R})$, alors :

- u + v est dérivable sur I et (u + v)' = u' + v'.
- $u \times v$ est dérivable sur I et $u \times v' = u' \times v + u \times v'$.
- $si\ u\ ne\ s'annule\ pas\ sur\ I$, $\frac{1}{u}$ est dérivable $sur\ I$ et $\left(\frac{1}{u}\right)' = \frac{-u'}{u^2}$
- si v ne s'annule pas sur I, $\frac{u}{v}$ est dérivable sur I et $\boxed{\left(\frac{u}{v}\right)' = \frac{u' \times v u \times v'}{v^2}}$.

Propriété 5. On considère une fonction $f: I \to J$ bijective et dérivable sur I telle que f' ne s'annule pas sur I, alors son application réciproque g est dérivable sur J et $g' = \frac{1}{f' \circ g}$.

Exercice 5. Montrer que la fonction $f:]-\frac{\pi}{2}; +\frac{\pi}{2}[\rightarrow \mathbb{R}$ est bijective, que son application $x \mapsto \tan x$ réciproque arctan est dérivable et calculer \arctan' .

Propriété 6. On considère une fonction $u \in \mathcal{D}(I,\mathbb{R})$ et une fonction $v \in \mathcal{D}(J,\mathbb{R})$ avec $u(I) \subset J$, alors la fonction $v \circ u$ est dérivable sur I et $(v \circ u)' = u' \times (v' \circ u)$.

Exercice 6. Montrer que la fonction $f: x \mapsto \arctan\left(\frac{e^x - e^{-x}}{2}\right)$ est dérivable sur \mathbb{R} et calculer sa dérivée.

3 Fonctions de classe C^n

On peut définir par récurrence (si elle existe) la dérivée n-ième d'une fonction pour $n \in \mathbb{N}$.

Exercice 7. Montrer pour $k \in \mathbb{N}$ que la fonction $f: x \mapsto x^k$ est n fois dérivable pour $n \in [0, k]$ et calculer $f^{(n)}$.

Définition 4. On dit qu'une fonction $f \in \mathcal{F}(I,\mathbb{R})$ est de classe \mathcal{C}^n sur I si f est n fois dérivable sur I et si $f^{(n)}$ est continue sur I. On note $\mathcal{C}^n(I,\mathbb{R})$ l'ensemble des fonctions de classe \mathcal{C}^n sur I

Remarque 3. Les fonctions de classe C^0 sur I sont les fonctions continues sur I.

Remarque 4. Si f est de classe C^n sur I, ses dérivées d'ordre inférieur ou égal à n sont continues sur I.

Exercice 8. Déterminer la classe de la fonction $f: x \mapsto x^3|x|$ sur \mathbb{R} .

Définition 5. On dit qu'une fonction $f \in \mathcal{F}(I,\mathbb{R})$ est de classe \mathcal{C}^{∞} sur I si f est de classe \mathcal{C}^n sur I pour tout $n \in \mathbb{N}$. On note $\mathcal{C}^{\infty}(I,\mathbb{R})$ l'ensemble des fonctions de classe \mathcal{C}^{∞} sur I

Exercice 9. Montrer que la fonction cosinus est de classe C^{∞} sur \mathbb{R} et déterminer $\cos^{(n)}$.

Propriété 7. On considère deux fonctions $u, v \in \mathcal{F}(I, \mathbb{R})$ n fois dérivables sur I alors la fonction u + v est n fois dérivable sur I et $(u + v)^{(n)} = u^{(n)} + v^{(n)}$.

Corollaire 2. On considère $u, v \in C^n(I, \mathbb{R})$ alors $u + v \in C^n(I, \mathbb{R})$.

Propriété 8. Formule de Leibniz

On considère deux fonctions $u, v \in \mathcal{F}(I, \mathbb{R})$ n fois dérivables sur I alors la fonction $u \times v$ est n fois

dérivable sur
$$I$$
 et $\left| (u \times v)^{(n)} \right| = \sum_{k=0}^{k=n} \binom{n}{k} u^{(k)} \times v^{(n-k)}$.

Exercice 10. Montrer que la fonction $x \mapsto x^2 e^x$ est n fois dérivable sur \mathbb{R} et calculer sa dérivée n-ième.

Corollaire 3. On considère $u, v \in C^n(I, \mathbb{R})$ alors $u \times v \in C^n(I, \mathbb{R})$.

Remarque 5. On peut étendre la propriété au quotient si v ne s'annule pas sur I.

Propriété 9. On considère $u \in C^n(I,J)$ et $v \in C^n(J,\mathbb{R})$ alors $v \circ u \in C^n(I,\mathbb{R})$.

Propriété 10. On considère $f \in C^n(I, J)$ avec $n \ge 1$ admettant une application réciproque g et telle que f' ne s'annule pas sur I, alors $g \in C^n(J, I)$.

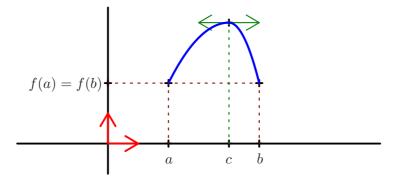
4 Propriétés des fonctions dérivables

Propriété 11. On considère une fonction f à valeurs réelles définie à gauche et à droite de a et admettant un extremum local en a, si f est dérivable en a alors f'(a) = 0.

Contre-exemple 2. La fonction cube possède une dérivée qui s'annule en 0 mais elle n'admet pas d'extremum local en 0.

Théorème 1. Théorème de Rolle

On considère une fonction f à valeurs réelles continue sur un intervalle [a;b] non réduit à un point et dérivable sur [a;b] telle que f(a) = f(b) alors il existe $c \in [a;b]$ tel que f'(c) = 0.

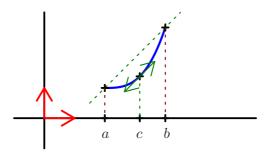


Remarque 6. c n'est pas forcément unique.

Remarque 7. Si la fonction f est dérivable sur [a;b] alors elle est a fortiori continue sur [a;b] et dérivable sur [a;b].

Théorème 2. Théorème des accroissements finis

On considère une fonction f à valeurs réelles continue sur un intervalle [a;b] non réduit à un point et dérivable sur [a;b] alors il existe $c \in]a;b[$ tel que $\frac{f(b)-f(a)}{b-a}=f'(c).$



Corollaire 4. Inégalité des accroissements finis

On considère une fonction f à valeurs réelles continue sur un intervalle [a;b] non réduit à un point et dérivable sur [a;b] telle que $m \le f'(x) \le M$ pour tout $x \in [a;b]$ alors $m(b-a) \le f(b)-f(a) \le M(b-a)$.

Remarque 8. Si $|f'(x)| \leq M$ pour tout $x \in]a; b[$ alors $|f(b) - f(a)| \leq M(b-a)$.

Exercice 11. Montrer en utilisant l'inégalité des accroissements finis que $\tan x \ge x$ pour tout $x \in [0; \frac{\pi}{2}[$.

Propriété 12. On considère une fonction f à valeurs réelles définie et dérivable sur I, alors :

- $Si\ f' = 0\ sur\ I\ alors\ f\ est\ constante\ sur\ I.$
- Si $f' \ge 0$ (respectivement f' > 0) sur I alors f est croissante (respectivement strictement croissante) sur I.
- Si $f' \leq 0$ (respectivement f' < 0) sur I alors f est décroissante (respectivement strictement décroissante) sur I.

Exercice 12. Montrer que si f est une fonction croissante sur I et dérivable sur I alors $f' \ge 0$ sur I.

Contre-exemple 3. La fonction cube est strictement croissante sur \mathbb{R} et sa dérivée s'annule en 0.

Théorème 3. Théorème de la limite de la dérivée

On considère une fonction f à valeurs réelles continue sur [a;b] et dérivable sur [a;b], si f' admet une limite à droite en a alors $\Delta_{f,a}$ admet la même limite à droite en 0.

Remarque 9. On peut également formuler ce résultat dans le cas d'une limite à gauche.

Remarque 10. Dans le cas où f' admet une limite finie en a, on en déduit que la fonction f est dérivable en a.

Exercice 13. Montrer que la fonction $f: x \mapsto x\sqrt{x}$ est dérivable en 0 en étudiant la limite du taux d'accroissement puis en utilisant la remarque 10.

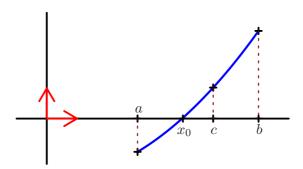
Exercice 14. Montrer que la fonction $f: \mathbb{R} \to \mathbb{R}$ est de classe C^1 sur \mathbb{R} . $x \mapsto \begin{cases} 0 & si & x \leq 0 \\ e^{-\frac{1}{x}} & si & x > 0 \end{cases}$

5 Calcul approché des zéros d'une fonction

5.1 Méthode de dichotomie

Propriété 13. On considère une fonction $f \in \mathcal{C}([a;b],\mathbb{R})$ strictement monotone avec f(a)f(b) < 0, alors l'équation f(x) = 0 admet une unique solution x_0 sur l'intervalle [a;b] et pour tout $c \in [a;b]$:

- $si\ f(c) = 0 \ alors \ x_0 = c$.
- $si\ f(a)f(c) < 0\ alors\ x_0 \in]a; c[.$
- $si\ f(c)f(b) < 0\ alors\ x_0 \in]c;b[.$



La *méthode de dichotomie* consiste à itérer cette discrimination afin d'obtenir un encadrement de plus en plus précis de la racine de f, on choisit en général pour c le centre de l'intervalle [a;b].

Exercice 15. Déterminer un encadrement d'amplitude $\frac{1}{8}$ par des nombres rationnels de $\sqrt{2}$ en utilisant la méthode de dichotomie appliquée à la fonction $f: x \mapsto x^2 - 2$ sur l'intervalle [1; 2].

Exercice 16. Que peut-on dire de l'amplitude d'un encadrement obtenu après n étapes de la méthode de dichotomie?

5.2 Utilisation de suites récurrentes

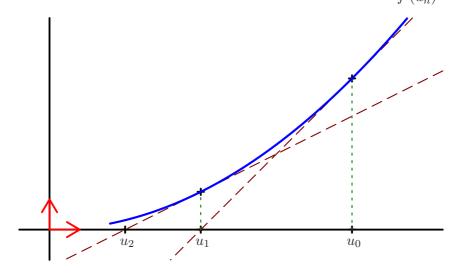
Propriété 14. On considère une fonction $f \in \mathcal{C}(I,I)$ et une suite $(u_n)_{n\in\mathbb{N}}$ telle que $u_0 \in I$ et $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$, alors si $(u_n)_{n\in\mathbb{N}}$ converge vers $l \in I$ on a f(l) = l.

Exercice 17. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{2u_n+2}{u_n+2} \end{cases}$.

- 1. Montrer que $0 \le u_n \le 2$ pour tout $n \in \mathbb{N}$. (on pourra étudier les variations de la fonction $f: x \mapsto \frac{2x+2}{x+2}$)
- 2. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers $\sqrt{2}$. (on pourra utiliser le théorème de convergence monotone)
- 3. Montrer que pour tout $n \in \mathbb{N}$ on a $|u_{n+1} \sqrt{2}| \leq \frac{1}{2}|u_n \sqrt{2}|$. (on pourra utiliser l'inégalité des accroissements finis sur l'intervalle $[u_n; \sqrt{2}]$)

5.3 Méthode de Newton

On considère une fonction $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ dérivable sur \mathbb{R} avec f' ne s'annulant pas sur \mathbb{R} , la **méthode de Newton** consiste en la construction d'une suite récurrente $u_{n+1} = u_n - \frac{f(u_n)}{f'(u_n)}$.



Exercice 18. On considère la fonction $f: x \mapsto x^2 - 2$.

- 1. Déterminer la relation de récurrence de la suite $(u_n)_{n\in\mathbb{N}}$ associée à la fonction f par la méthode de Newton.
- 2. On pose $u_0 = 2$, montrer que la suite $(u_n)_{n \in \mathbb{N}}$ converge vers $l = \sqrt{2}$. (on pourra utiliser le théorème de convergence monotone)
- 3. Montrer que pour tout $n \in \mathbb{N}$ on a $u_{n+1} \sqrt{2} \leqslant \frac{u_n^2 2}{2u_n^2}(u_n \sqrt{2})$. (on pourra utiliser l'inégalité des accroissements finis sur l'intervalle $[\sqrt{2}; u_n]$)
- 4. En déduire que pour tout $n \in \mathbb{N}$ on a $|u_{n+1} \sqrt{2}| \leqslant \frac{\sqrt{2}}{2} |u_n \sqrt{2}|^2$.

Exercices supplémentaires

Exercice 19

La fonction
$$f: \mathbb{R} \to \mathbb{R}$$
 est-elle dérivable en 0 ?
$$x \mapsto \begin{cases} 2x^2 + x + 2 & \text{si} \quad x < 1 \\ x^2 + 3x + 1 & \text{si} \quad x \geqslant 1 \end{cases}$$

Exercice 20

Les fonctions $f: x \mapsto \sqrt{x}$ et $g: x \mapsto x\sqrt{x}$ sont-elles dérivables à droite en 0?

Exercice 21

Montrer que la fonction $x \mapsto x \ln x$ peut se prolonger par continuité en une fonction \tilde{f} définie sur $[0; +\infty[$. La fonction \tilde{f} est-elle dérivable en 0?

Exercice 22

Déterminer l'équation réduite de la tangente à la courbe d'équation $y = \sqrt{x^2 - 1}$ au point d'abscisse 2.

Exercice 23 (\star)

Déterminer les points M de la parabole d'équation $y = 1 + 4x^2$ tels que la tangente à la parabole au point M passe par l'origine du repère.

Exercice 24 (\star)

On considère $f \in \mathcal{D}(\mathbb{R}, \mathbb{R})$, montrer que si f est paire alors f' est impaire et que si f est impaire alors f' est paire.

Exercice 25

Déterminer un développement limité d'ordre 1 de $\ln(1+\sin x)$ en 0, en déduire $\lim_{\substack{x\to 0\\x\neq y}}\frac{\ln(1+\sin x)}{x}$.

Exercice 26

Déterminer un équivalent au voisinage de 0 de $\arctan x$.

Exercice 27 (\star)

Étudier
$$\lim_{\substack{x \to 0 \\ x \neq 0}} \frac{\sqrt[3]{1+x}-1}{x}$$
 puis $\lim_{\substack{x \to \frac{\pi}{3} \\ x \neq \frac{\pi}{n}}} \frac{2\cos x-1}{\pi-3x}$.

Exercice 28 (\star)

Montrer que si une fonction $f \in \mathcal{F}(I,\mathbb{R})$ est dérivable en $a \in I$ alors $\frac{f(a+h) - f(a-h)}{2h} \xrightarrow[h \to 0]{} f'(a)$.

Exercice 29 (*)

On considère une fonction $f \in \mathcal{F}(I, \mathbb{R})$ dérivable en $a \in I$, étudier $\lim_{x \to a} \frac{xf(a) - af(x)}{x - a}$.

Exercice 30

Montrer que la fonction $f: x \mapsto \frac{e^x - e^{-x}}{e^x + e^{-x}}$ est dérivable sur \mathbb{R} et calculer f'.

Exercice 31

Montrer que la fonction $f: \mathbb{R} \to \mathbb{R}$ est bijective, que son application réciproque g est dérivable et calculer g'(2).

Exercice 32

Montrer que la fonction $f: x \mapsto \arctan\left(\frac{e^x - e^{-x}}{e^x + e^{-x}}\right)$ est dérivable sur $\mathbb R$ et calculer f'.

Exercice 33 (*)

Calculer
$$\sum_{k=0}^{k=n} ke^{kx}$$
.

Exercice 34 (*)

Montrer que
$$\arctan\left(\frac{e^{2x}-e^{-2x}}{2}\right)=2\arctan\left(\frac{e^x-e^{-x}}{e^x+e^{-x}}\right)$$
 pour tout $x\in\mathbb{R}$.

Exercice 35

Montrer que la fonction $f: x \mapsto xe^x$ est n fois dérivable sur \mathbb{R} et déterminer $f^{(n)}(x)$.

Exercice 36 (*)

Montrer que la fonction $f: x \mapsto \frac{1}{1+x}$ est n fois dérivable sur]-1;1[et déterminer $f^{(n)}(x)$. En déduire que les fonctions $g: x \mapsto \frac{1}{1-x}$ et $h: x \mapsto \frac{1}{1-x^2}$ sont n fois dérivables sur]-1;1[et déterminer $g^{(n)}(x)$ et $h^{(n)}(x)$.

Exercice 37

Montrer que la fonction
$$f: \mathbb{R} \to \mathbb{R}$$
 est de classe \mathcal{C}^1 sur \mathbb{R} .
$$x \mapsto \begin{cases} e^x & \text{si } x < 0 \\ x+1 & \text{si } x \geqslant 0 \end{cases}$$

Exercice 38

Montrer que la fonction $x \mapsto x^2 \sin\left(\frac{1}{x}\right)$ est prolongeable par continuité sur \mathbb{R} en une fonction f dérivable sur \mathbb{R} . La fonction f est-elle de classe C^1 sur \mathbb{R} ?

Exercice 39 (\star)

Déterminer les solutions de l'équation différentielle $t^3y'-2y=0$ définies sur \mathbb{R} .

Exercice 40

Montrer en utilisant la formule de Leibniz que la fonction $x \mapsto x^2 e^{2x}$ est n fois dérivable sur \mathbb{R} et calculer sa dérivée n-ième.

Exercice 41 (\star)

Montrer que la fonction $x \mapsto (x^2 + x + 1)e^{-x}$ est n fois dérivable sur \mathbb{R} et calculer sa dérivée n-ième.

(on pourra utiliser la formule de Leibniz)

Exercice 42

On considère le polynôme P(X) = (X-1)(X-2)(X-3)(X-4)(X-5). Montrer que P'(X) admet quatre racines réelles distinctes.

Exercice 43 (*)

On considère une fonction $f \in \mathcal{D}(\mathbb{R}, \mathbb{R})$ périodique, montrer que f' s'annule une infinité de fois.

Exercice 44 (\star)

On considère $f,g \in \mathcal{D}([a;b],\mathbb{R})$ avec g' ne s'annulant pas sur [a;b]. Montrer que $g(a) \neq g(b)$ et qu'il existe $c \in]a;b[$ tel que $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(c)}{g'(c)}.$ (on pourra considérer la fonction $h:x \mapsto [f(b)-f(a)]g(x)-[g(b)-g(a)]f(x)$)

Exercice 45

Encadrer $\arctan\left(\frac{5}{4}\right) - \frac{\pi}{4}$ en utilisant l'inégalité des accroissements finis.

Exercice 46 (\star)

Montrer en utilisant l'inégalité des accroissements finis que $x \cos x \le \sin x \le x$ pour tout $x \in [0, \frac{\pi}{2}]$.

Exercice 47 (\star)

Montrer en utilisant l'inégalité des accroissements finis que $\frac{x}{x+1} \le \ln(1+x) \le x$ pour tout $x \in \mathbb{R}_+$.

Exercice 48

Montrer que la fonction $f: \mathbb{R} \to \mathbb{R}$ est de classe \mathcal{C}^1 sur \mathbb{R} . $x \mapsto \begin{cases} 0 & \text{si} & |x| \geqslant 1 \\ (1-x^2)^2 & \text{si} & |x| < 1 \end{cases}$

Exercice 49 $(\star\star)$

Montrer que la fonction $f: x \mapsto \sqrt{\ln(1+x^4)}$ est de classe \mathcal{C}^1 sur \mathbb{R} .

Exercice 50

On considère l'équation $(E): (x-1)e^x + x = 0.$

- 1. Montrer que l'équation (E) admet une unique solution réelle α et l'encadrer par deux entiers consécutifs.
- 2. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{e^{u_n}}{e^{u_n} + 1} \text{ pour tout } n \in \mathbb{N} \end{cases}.$
 - (a) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers α .
 - (b) Montrer que $|u_{n+1} \alpha| \leq \frac{1}{4}|u_n \alpha|$ pour tout $n \in \mathbb{N}$ et en déduire que $|u_n \alpha| \leq \frac{1}{4^n}$ pour tout $n \in \mathbb{N}$.

Exercice 51

On considère la fonction $f: x \mapsto xe^{-x^2}$.

- 1. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ associée à la fonction f par la méthode de Newton vérifie la relation de récurrence $u_{n+1} = \frac{2u_n^3}{2u_n^2 1}$ pour tout $n \in \mathbb{N}$.
- 2. Montrer que si $u_0 = \pm \frac{1}{2}$, la suite $(u_n)_{n \in \mathbb{N}}$ diverge.

Exercice 52

On considère la fonction $f: x \mapsto \ln x - 1$.

- 1. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ associée à la fonction f par la méthode de Newton vérifie la relation de récurrence $u_{n+1} = u_n(2 \ln u_n)$ pour tout $n \in \mathbb{N}$.
- 2. Montrer que si $u_0 \in]0; e]$ alors la suite $(u_n)_{n \in \mathbb{N}}$ est croissante majorée par e et en déduire qu'elle converge vers e.
- 3. Montrer que si $u_0 \in]0; e]$ alors $e u_{n+1} \leq (e u_n)(1 \ln u_n)$ pour tout $n \in \mathbb{N}$.
- 4. En déduire que si $u_0 \in [1; e]$ alors $e u_{n+1} \leq (e u_n)^2$ pour tout $n \in \mathbb{N}$.

Réponses

- 1) $f'(a) = -\frac{1}{a^2}$.
- 2) $f'(a) = na^{n-1}$.
- 3) $f'_d(0) = 1$ et $f'_g(0) = -1$.
- 4) $\sin x = x + o(x)$, $\sqrt{x+1} = 1 + \frac{1}{2}x + o(x)$; $e^x = 1 + x + o(x)$ et $\ln(1+x) = x + o(x)$.
- 5) On remplace x par a puis on calcule le taux d'accroissement de f en a.
- 6) $\arctan'(x) = \frac{1}{1+x^2}$.
- 7) $f'(x) = \frac{2}{e^x + e^{-x}}$.
- 8) $f'(x) = \frac{k!}{(k-n)!} x^{k-n}$.
- 9) f est de classe C^3 avec $f'(x) = 4x^2|x|$, f''(x) = 12x|x| et f'''(x) = 24|x|.
- 10) $\cos^{(n)}(x) = \cos(x + n\frac{\pi}{2}).$
- **11)** $f^{(n)}(x) = (x^2 + 2nx + n(n-1))e^x$.
- 12) On montre que $\tan b \tan 0 \le 1 \times (b-0)$.
- 13) On montre que le taux d'accroissement est positif.
- 14) $f'(x) = \frac{3}{2}\sqrt{x}$ admet une limite en 0 à droite.
- **15)** $f'(x) = -\frac{1}{x^2}e^{-\frac{1}{x}}$ tend vers 0 en 0 à droite.
- **16**) $\sqrt{2} \in \left[\frac{11}{8}; \frac{3}{2}\right]$.
- 17) L'amplitude de l'encadrement est $\frac{b-a}{2^n}$.
- 18) On montre que si $x \in [0; 2]$ alors $f(x) \in [0; 2]$ puis on procède par récurrence; on montre que la suite est croissante et majorée donc convergente vers l telle que f(l) = l; on montre que $|f(u_n) f(l)| \leq \frac{1}{2}|u_n l|$.
- **19)** $u_{n+1} = \frac{u_n^2 + 2}{2u_n}$; on montre que la suite est décroissante minorée par 0; on pose $\varphi(x) = \frac{x^2 + 2}{2x}$ et on montre que $|\varphi(u_n) \varphi(\sqrt{2})| \leqslant \frac{u_n^2 2}{2u_n^2} |u_n \sqrt{2}|$ car φ' est croissante sur $[0; +\infty[$; on montre que $\frac{u_n + \sqrt{2}}{2u_n^2} \leqslant \frac{\sqrt{2}}{2}$ si $u_n \geqslant \sqrt{2}$.
- **20)** On montre que $\Delta_{f,0}$ admet 5 pour limite à gauche et à droite en 0.
- 21) La fonction f n'est pas dérivable à droite en 0, la fonction g est dérivable à droite en 0.
- **22)** \tilde{f} n'est pas dérivable en 0.
- **23)** $y = \frac{\sqrt{3}}{3}(2x-1)$.
- **24)** $M_1(\frac{1}{2};2)$ et $M_2(-\frac{1}{2};2)$.
- **25)** On montre que si f est paire $\Delta_{f,-a}(h) = -\Delta_{f,a}(-h)$ et que si f est impaire $\Delta_{f,-a}(h) = \Delta_{f,a}(-h)$.
- **26**) 1.
- **27)** $\arctan x \sim_{x\to 0} x$.
- **28)** $\frac{1}{3}$ et $\frac{\sqrt{3}}{3}$.
- **29)** On utilise un développement limité d'ordre 1 de f en a.
- **30)** f(a) af'(a).
- 31) $f'(x) = \frac{4}{(e^x + e^{-x})^2}$.
- **32)** $g'(2) = \frac{1}{f'(g(2))} = \frac{1}{4}$.

- **33)** $f'(x) = \frac{2}{e^{2x} + e^{-2x}}$.
- **34)** On pose $f(x) = \sum_{k=0}^{k=n} e^{kx} = \frac{1 e^{(n+1)x}}{1 e^x}$, la somme cherchée est $f'(x) = \frac{ne^{(n+2)x} (n+1)e^{(n+1)x} + e^x}{(1 e^x)^2}$. (on traite séparément le cas x = 0)
- **35)** On procède par dérivation en remarquant que les fonctions associées ont même dérivée et même valeur en 0.
- **36)** $f^{(n)}(x) = (x+n)e^x$.
- **37)** $f^{(n)}(x) = \frac{(-1)^n n!}{(1+x)^{n+1}}$ et $g^{(n)}(x) = \frac{n!}{(1-x)^{n+1}}$, on remarque que $h = \frac{1}{2}(f+g)$.
- 38) On montre que f est continue en 0, dérivable en 0 avec f'(0) = 1 et que f' est continue en 0.
- 39) Le prolongement par continuité de f est dérivable mais sa dérivée n'est pas continue en 0.

40)
$$f(t) = \begin{cases} C_1 e^{-\frac{1}{t^2}} & \text{si} \quad t < 0 \\ 0 & \text{si} \quad t = 0 \\ C_2 e^{-\frac{1}{t^2}} & \text{si} \quad t > 0 \end{cases}$$

- **41)** $f^{(n)}(x) = (2^n x^2 + n2^n x + n(n-1)2^{n-2})e^{2x}$
- **42)** Pour $n \ge 2$, on a $f^{(n)}(x) = \binom{n}{0} (x^2 + x + 1) \times (-1)^n e^{-x} + \binom{n}{1} (2x + 1) \times (-1)^{n-1} e^{-x} + \binom{n}{2} 2 \times (-1)^{n-2} e^{-x} = (-1)^n [x^2 + (1-2n)x + (n-1)^2] e^{-x}$ et la formule est valable également pour n = 0 ou n = 1.
- 43) On uilise le théorème de Rolle sur les intervalles [1; 2], [2; 3], [3; 4] et [4; 5].
- 44) On utilise le théorème de Rolle.
- 45) On utilise le théorème de Rolle.
- **46)** Le réel est dans l'intervalle $\left[\frac{4}{41}; \frac{1}{8}\right]$.
- **47)** On remarque que $\sin'(\theta) = \cos(\theta) \in [\cos x; 1]$ pour $\theta \in [0; x]$.
- **48)** On remarque que $\frac{1}{1+c} \in [\frac{1}{1+x}; 1]$ pour $c \in [0; x]$.
- **49)** On montre en utilisant le théorème de la limite de la dérivée que f est dérivable en -1 et 1.
- **50)** On montre que $f(x) \underset{x\to 0}{\sim} x^2$ puis on utilise le théorème de la limite de la dérivée.
- **51)** 1. $\alpha \in [0; 1]$.
 - 2. (a) On utilise le théorème de la limite monotone en remarquant que la suite est croissante et majorée par 1.
 - (b) On applique l'inégalité des accroissements finis sur l'intervalle $[u_n; \alpha]$ à la fonction $f: x \mapsto \frac{e^x}{e^x + 1}$ en remarquant que $|f'(x)| \leq \frac{1}{4}$ pour $x \in [0; 1]$.
- **52)** 1. On a $u_{n+1} = u_n \frac{f(u_n)}{f'(u_n)}$.
 - 2. On a $u_n = u_0(-1)^n$
- **53)** 1. On a $u_{n+1} = u_n \frac{f(u_n)}{f'(u_n)}$.
 - 2. On étudie les variations de la fonction $g: x \mapsto x(2 \ln x)$ sur l'intervalle [0; e].
 - 3. On applique l'inégalité des accroissements finis à la fonction q sur l'intervalle $[u_n; e]$.
 - 4. On applique l'inégalité des accroissements finis à la fonction ln sur l'intervalle $[u_n; e]$.