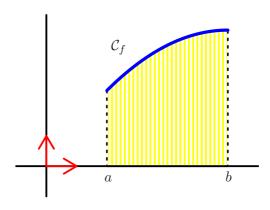
XV. Intégration

1 Intégrale d'une fonction continue sur un segment

Définition 1.

Soit f une fonction continue et positive sur un intervalle [a;b]. Le plan est muni d'un repère orthogonal. L'aire (exprimée en unités d'aire) du domaine délimité par la courbe représentative \mathcal{C}_f de la fonction f, l'axe des abscisses et les droites d'équations x=a et x=b est appelée intégrale de la fonction f entre a et b et est notée :



$$\int_{a}^{b} f(x) \, \mathrm{d}x$$

Remarque 1.
$$\int_a^b 0 \, dx = 0 \qquad et \qquad \int_a^a f(x) \, dx = 0$$

Remarque 2. Une fonction continue et positive sur un intervalle [a;b] est nulle si et seulement si son intégrale entre a et b est nulle.

Exercice 1. Calculer $\int_2^3 (2x+1) dx$ en utilisant la définition de l'intégrale.

Définition 2. Pour une fonction f continue négative sur un intervalle [a;b] on appelle intégrale de la fonction f entre a et b l'opposé de l'intégrale de la fonction -f entre a et b. Pour une fonction f continue sur un intervalle [a;b] on appelle intégrale de la fonction f entre a et b la somme des intégrales de la fonction f sur les intervalles où f est de signe constant.

Exercice 2. Calculer $\int_{-2}^{3} (x-1) dx$ en utilisant la définition de l'intégrale.

Définition 3. Soit f une fonction continue sur un intervalle [a;b]. On appelle valeur moyenne de la fonction f sur l'intervalle [a;b]:

$$\frac{1}{b-a} \int_{a}^{b} f(x) \, \mathrm{d}x$$

Remarque 3. La valeur moyenne d'une fonction sur un intervalle [a;b] correspond à la valeur d'une fonction contante de même intégrale entre a et b.

Exercice 3. Calculer la valeur moyenne de la fonction sinus sur l'intervalle $[0; \pi]$.

Propriété 1. Croissance de l'intégrale

On considère deux fonctions f et g continues sur [a;b] avec $f \leq g$, alors $\int_a^b f(x) dx \leq \int_a^b g(x) dx$.

Propriété 2. Inégalité triangulaire

On considère une fonction f continue sur [a;b], alors $\left|\int_a^b f(x) dx\right| \leq \int_a^b |f(x)| dx$.

Exercice 4. Interpréter géométriquement l'inégalité triangulaire.

Propriété 3. Linéarité de l'intégrale

On considère $f, g \in \mathcal{C}([a; b], \mathbb{R})$ et $\lambda, \mu \in \mathbb{R}$, alors $\int_a^b \lambda f(x) + \mu g(x) dx = \lambda \int_a^b f(x) dx + \mu \int_a^b g(x) dx$.

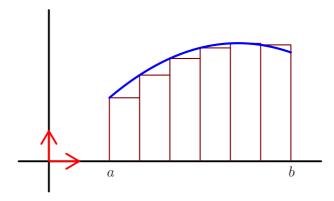
Propriété 4. Relation de Chasles

On considère une fonction f continue sur[a;c] et $b \in [a;c]$, alors $\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx$.

Remarque 4. On peut utiliser la relation de Chasles pour définir l'intégrale d'une fonction continue sur un intervalle [a;b] entre b et a par $\int_b^a f(x) \, \mathrm{d}x = -\int_a^b f(x) \, \mathrm{d}x$, les propriétés de l'intégrale vues précédemment demeurent valables à l'exception de celles faisant intervenir l'ordre en particulier l'inégalité triangulaire.

Propriété 5. Sommes de Riemann

Si f est une fonction continue sur l'intervalle [a;b] alors $\frac{b-a}{n}\sum_{k=0}^{k=n-1}f\left(a+k\frac{b-a}{n}\right)\xrightarrow[n\to+\infty]{}\int_a^bf(x)\,\mathrm{d}x.$



Remarque 5. La propriété demeure valable en considérant la somme $\frac{b-a}{n}\sum_{k=1}^{k=n}f\left(a+k\frac{b-a}{n}\right)$.

Exercice 5. Calculer $\int_0^1 x^2 dx$ en utilisant les sommes de Riemann.

Exercice 6. Montrer que $\frac{b-a}{n} \left[\frac{f(a)+f(b)}{2} + \sum_{k=1}^{k=n-1} f\left(a+k\frac{b-a}{n}\right) \right] \xrightarrow[n \to +\infty]{} \int_a^b f(x) \, \mathrm{d}x$ en approchant l'intégrale de f au moyen de trapèzes.

2 Calcul intégral

Définition 4. On considère une fonction $f \in \mathcal{F}(I,\mathbb{R})$, une fonction $F \in \mathcal{D}(I,\mathbb{R})$ telle que F' = f est appelée une primitive de la fonction f sur l'intervalle I.

 $\begin{array}{ccc}
\mathbb{R} & \to & \mathbb{R} \\
x & \mapsto & \begin{cases}
1 & si & x = 0 \\
0 & si & x \neq 0
\end{cases}$ $n'admet\ pas\ de\ primitive\ sur\ \mathbb{R}.$ **Exercice 7.** Montrer que la fonction $f: \mathbb{R} \rightarrow$

Propriété 6. Si F_1 et F_2 sont deux primitives d'une fonction $f \in \mathcal{F}(I,\mathbb{R})$ alors il existe un réel k tel que $F_2 = F_1 + k.$

Théorème fondamental de l'analyse Théorème 1.

On considère une fonction $f \in \mathcal{C}(I,\mathbb{R})$ et $x_0, a, b \in I$:

- La fonction $F: x \mapsto \int_{x_0}^x f(t) dt$ est une primitive de f sur I s'annulant en x_0 .
 - Si F est une primitive de f sur I alors $\int_a^b f(t)dt = [F(t)]_{t=a}^{t=b} = F(b) F(a).$

Exercice 8. Calculer l'aire du domaine plan délimité par l'axe des abscisses, la courbe représentative de la fonction inverse ainsi que les droites d'équation x = 1 et x = 2.

Corollaire 1. Si $f \in C^1(I, \mathbb{R})$ et $a, b \in I$ alors $\int_{-\infty}^{b} f'(t) dt = f(b) - f(a)$.

Propriété 7. Intégration par parties
$$Si\ u,v\in\mathcal{C}^1(I,\mathbb{R})\ et\ a,b\in I\ alors\ \int_a^b u'(t)v(t)\mathrm{d}t = [u(t)v(t)]_{t=a}^{t=b} - \int_a^b u(t)v'(t)\mathrm{d}t.$$

Exercice 9. Calculer $\int_{0}^{\frac{\pi}{2}} t \sin t \, dt$ par intégration par parties.

Exercice 10. Déterminer une primitive de la fonction $x \mapsto xe^x$ sur \mathbb{R} par intégration par parties.

Remarque 6. En pratique, on note $x = \varphi(t)$ et $dx = \varphi'(t)dt$.

Exercice 11. Calculer $\int_{-1}^{1} \sqrt{1-x^2} dx$ puis interpréter graphiquement. (on pourra utiliser le changement de $variable \ x = \cos t$

Exercice 12. Calculer $\int_0^{\frac{\pi}{2}} (\cos t)^2 (\sin t)^3 dt$. (on pourra utiliser le changement de variable $x = \cos t$)

- Corollaire 2. On considère $f \in \mathcal{C}(\mathbb{R}, \mathbb{R})$ et $a, b \in \mathbb{R}$:

 si f est impaire alors $\int_{-a}^{a} f(t) dt = 0$ et si f est paire alors $\int_{-a}^{a} f(t) dt = 2 \int_{0}^{a} f(t) dt$.
 - $si\ f\ est\ T$ -périodique $alors\ \int_{-t}^{b+T} f(t)dt = \int_{-t}^{b} f(t)dt$.

Exercice 13. Calculer $\int_0^{\pi} (\cos t)^3 dt$. (on pourra utiliser le changement de variable $t = \pi - x$)

3 Développements limités

3.1 Formules de Taylor

Droppiótó 0 Forr

Formule de Taylor-Lagrange avec reste intégral

On considère $f \in C^{n+1}(I, \mathbb{R})$ et $a, b \in I$ alors :

$$f(b) = \sum_{k=0}^{k=n} \frac{f^{(k)}(a)}{k!} (b-a)^k + \int_a^b \frac{f^{(n+1)}(t)}{n!} (b-t)^n dt$$

Corollaire 3. Inégalité de Taylor-Lagrange

On considère $f \in \mathcal{C}^{n+1}(I, \mathbb{R})$ et $a, b \in I$ alors :

$$\left| f(b) - \sum_{k=0}^{k=n} \frac{f^{(k)}(a)}{k!} (b-a)^k \right| \leqslant \frac{|b-a|^{n+1}}{(n+1)!} \max_{\substack{k \\ [a:b]}} |f^{(n+1)}|$$

Exercice 14. Appliquer l'inégalité de Taylor-Lagrange à la fonction exponentielle pour a=0 et b=x. En déduire $\lim_{n\to+\infty}\sum_{k=0}^{k=n}\frac{x^k}{k!}$.

Corollaire 4. Formule de Taylor-Young

On considère $f \in C^{n+1}(I, \mathbb{R})$ et $a, x \in I$ alors :

$$f(x) = \sum_{x \to a} \sum_{k=0}^{k=n} \frac{f^{(k)}(a)}{k!} (x-a)^k + o((x-a)^n)$$

Exercice 15. Appliquer la formule de Taylor-Young à la fonction cosinus en zéro. En déduire $\lim_{x\to 0} \frac{1-\cos x}{x^2}$.

En fait, on peut énoncer une version plus forte de la propriété :

Propriété 10.

Formule de Taylor-Young

On considère $f \in C^n(I, \mathbb{R})$ et $a, x \in I$ alors :

$$f(x) = \sum_{k=0}^{k=n} \frac{f^{(k)}(a)}{k!} (x-a)^k + o((x-a)^n)$$

Propriété 11.

Développements limités usuels

$$e^{x} \underset{x\to 0}{=} 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

$$\cos x \underset{x\to 0}{=} 1 - \frac{x^{2}}{2} + \frac{x^{4}}{24} + \dots + (-1)^{n} \frac{x^{2n}}{(2n)!} + o(x^{2n+1})$$

$$\sin x \underset{x\to 0}{=} x - \frac{x^{3}}{6} + \frac{x^{5}}{120} + \dots + (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

$$\frac{1}{1-x} \underset{x\to 0}{=} 1 + x + x^{2} + x^{3} + \dots + x^{n} + o(x^{n})$$

$$\ln(1+x) \underset{x\to 0}{=} x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots + (-1)^{n+1} \frac{x^{n}}{n} + o(x^{n})$$

$$(1+x)^{\alpha} \underset{x\to 0}{=} 1 + \alpha x + \frac{\alpha(\alpha-1)}{2} x^{2} + \frac{\alpha(\alpha-1)(\alpha-2)}{6} x^{3} + \dots + \frac{\alpha(\alpha-1)(\alpha-2)\dots(\alpha-n+1)}{n!} x^{n} + o(x^{n})$$

$$\arctan x \underset{x\to 0}{=} x - \frac{x^{3}}{3} + \frac{x^{5}}{5} + \dots + (-1)^{n} \frac{x^{2n+1}}{2n+1} + o(x^{2n+2})$$

3.2 Opérations sur les développements limités

Définition 5. On dit qu'une fonction f à valeurs réelles définie au voisinage de a admet un **développe**ment limité d'ordre $n \in \mathbb{N}$ en a si $f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + \cdots + c_n(x-a)^n + o((x-a)^n)$ avec $c_0, c_1, \ldots, c_n \in \mathbb{R}$.

Propriété 12. Si une fonction f admet un développement limité d'ordre n en a alors celui-ci est unique.

Exercice 16. Interpréter en termes de limites les coefficients du développement limité d'ordre n en 0 de la fonction $x \mapsto \frac{1}{1-x}$.

Corollaire 5. Si une fonction paire admet un développement limité d'ordre n en 0 alors les coefficients des termes de degré impair sont nuls, si une fonction impaire admet un développement limité d'ordre n en 0 alors les coefficients des termes de degré pair sont nuls.

On peut additionner et multiplier les développements limités :

Exercice 17. Calculer le développement limité d'ordre 4 en 0 des fonctions $x \mapsto \cos x + \sin x$ et $x \mapsto e^x \sin x$.

On peut déterminer le développement limité d'une composée :

Exercice 18. Calculer le développement limité d'ordre 3 en 0 des fonctions $x \mapsto e^{\sin x}$ et $x \mapsto e^{\cos x}$.

On peut déterminer le développement limité d'un inverse ou d'un quotient en utilisant le développement limité de $u\mapsto \frac{1}{1-u}$ en 0:

Exercice 19. Déterminer le développement limité d'ordre 5 en 0 de la fonction $x \mapsto \frac{1}{\cos x}$, en déduire le développement limité d'ordre 5 en 0 de la fonction tangente.

Propriété 13. Développement limité d'une primitive

On considère une fonction f définie sur un intervalle I et admettant une primitive F sur I telle que $f(x) = o((x-a)^n)$ avec $a \in I$ alors $F(x) = F(a) + o((x-a)^{n+1})$.

Exercice 20. Déterminer le développement limité d'ordre n en 0 de la fonction $x \mapsto \ln(1-x)$.

Exercice 21. Déterminer le développement limité d'ordre 2n + 1 en 0 de la fonction arctangente.

Contre-exemple 1. On considère la fonction
$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} 0 & si \ x = 0 \\ x^3 \sin \frac{1}{x} & si \ x \neq 0 \end{cases}$$

- 1. Montrer que $f(x) = o(x^2)$.
- 2. Montrer que f est dérivable sur \mathbb{R} .
- 3. Montrer que $f'(x) \neq o(x)$.

Si f est dérivable et admet un développement limité d'ordre n en a on ne peut donc pas affirmer que f' admet un développement limité d'ordre n-1 en a, en revanche si on sait que f' admet un développement limité d'ordre n-1 en a alors on peut l'obtenir par dérivation du développement limité d'ordre n de f en a d'après la propriété 13.

Exercices supplémentaires

Exercice 22

Calculer l'aire du domaine du plan situé entre les paraboles d'équation $y = x^2$ et $y = 1 - x^2$.

Exercice 23

Calculer la valeur moyenne de la fonction racine carrée sur l'intervalle [1; 3].

Exercice 24 (*)

Calculer la valeur moyenne de la fonction $x \mapsto (\sin x)^2$ sur l'intervalle $[0; \pi]$.

Exercice 25 (**)

On considère une fonction f continue sur l'intervalle [a;b] telle que $\int_a^b |f(x)| dx = \left| \int_a^b f(x) dx \right|$. Montrer que f est de signe constant. (on pourra considérer la fonction $g = |f| \pm f$)

Exercice 26 (**)

On considère une fonction f continue sur l'intervalle [a;b] telle que $\int_a^b f(t) dt = 0$. Montrer que f s'annule sur [a;b]. (on pourra appliquer le théorème de Rolle)

Exercice 27

Déterminer $\lim_{n\to+\infty}\sum_{k=0}^{k=n}\frac{1}{n+k}$ en étudiant les sommes de Riemann de la fonction $f:x\mapsto\frac{1}{1+x}$ sur l'intervalle [0;1].

Exercice 28

Montrer que $F: x \mapsto \ln|1+x|$ est une primitive de $f: x \mapsto \frac{1}{1+x}$ sur $]-\infty; -1[$ et sur $]-1; +\infty[$.

Exercice 29

Déterminer une primitive sur $[0; \frac{\pi}{2}]$ de la fonction tangente.

Exercice 30

Déterminer une primitive sur \mathbb{R} de la fonction $f: x \mapsto e^x \sin x$. (on pourra la chercher sous la forme $F: x \mapsto (\lambda \sin x + \mu \cos x)e^x$)

Exercice 31 (\star)

Déterminer une primitive sur \mathbb{R} de la fonction $f: x \mapsto e^x(\sin x)^2$. (on pourra linéariser)

Exercice 32

Déterminer une primitive sur \mathbb{R} de la fonction $f: x \mapsto \frac{1+x}{1+x^2}$.

Exercice 33 (*)

On considère la fonction $f: x \mapsto \frac{1+x+x^2}{1+x+x^2+x^3}$, montrer qu'il existe trois réels a, b et c tels que $f(x) = \frac{ax+b}{1+x^2} + \frac{c}{1+x}$ pour tout $x \in \mathbb{R}$ et en déduire une primitive de f sur $]-\infty;-1[$ et sur $]-1;+\infty[$.

Exercice 34

Calculer
$$\int_0^{\frac{\pi}{3}} (\tan t)^2 dt$$
.

Exercice 35

Calculer
$$\int_0^3 |t^2 - 3t + 2| \, \mathrm{d}t.$$

Exercice 36

Calculer
$$\int_0^1 (1+t)\sqrt{t} \, dt$$
.

Exercice 37 (**)

Montrer que la fonction $\phi: x \mapsto \int_x^{x^2} \frac{\mathrm{d}t}{\ln t}$ est définie et dérivable sur]0;1[et déterminer sa dérivée.

Exercice 38

Calculer
$$\int_0^{\frac{\pi}{4}} \frac{t}{(\cos t)^2} dt$$
. (on pourra effectuer une intégration par parties)

Exercice 39

Calculer
$$\int_0^1 t^3 e^{t^2} dt$$
. (on pourra effectuer une intégration par parties)

Exercice 40

Déterminer une primitive sur R de la fonction arctangente. (on pourra effectuer une intégration par parties)

Exercice 41 (*)

Calculer
$$\int_{1}^{e} t(\ln t)^4 dt$$
. (on pourra effectuer des intégrations par parties successives)

Exercice 42

Calculer
$$\int_0^{\frac{\pi}{2}} (\sin t)^2 (\cos t)^3 dt$$
. (on pourra utiliser le changement de variable $x = \sin t$)

Exercice 43 (*)

Calculer $\int_0^{\frac{\pi}{2}} \frac{\mathrm{d}t}{1+\cos t}$. (on pourra utiliser le changement de variable $x=\tan\frac{t}{2}$)

Exercice 44 (*)

Exprimer $1 + \tan\left(\frac{\pi}{4} - x\right)$ en fonction de $\tan x$ et en déduire $I = \int_0^{\frac{\pi}{4}} \ln(1 + \tan t) dt$. (on pourra utiliser un changement de variable)

Exercice 45 (*)

On considère $f \in \mathcal{C}(\mathbb{R}, \mathbb{R})$ T-périodique avec $a \in \mathbb{R}$, montrer que $\int_a^{a+T} f(t) dt = \int_0^T f(t) dt$. (on pourra utiliser la relation de Chasles)

Exercice 46 (*)

On considère une fonction f polynomiale de degré inférieur ou égal à 3.

Montrer que
$$\int_a^b f(x) dx = \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right).$$

Exercice 47 (**)

On considère une fonction f polynomiale de degré inférieur ou égal à 3.

Montrer que
$$\int_{a}^{b} f(x) dx = \frac{b-a}{2} \left(f\left(\frac{\sqrt{3}+1}{2\sqrt{3}}a + \frac{\sqrt{3}-1}{2\sqrt{3}}b\right) + f\left(\frac{\sqrt{3}-1}{2\sqrt{3}}a + \frac{\sqrt{3}+1}{2\sqrt{3}}b\right) \right).$$

Exercice 48 (*)

Démontrer que $x - \frac{x^2}{2} \le \ln(1+x) \le x - \frac{x^2}{2} + \frac{x^3}{3}$ pour $x \in \mathbb{R}_+$ en utilisant la formule de Taylor-Lagrange avec reste intégral à l'ordre 2 pour $f(t) = \ln(1+t)$, a = 0 et b = x.

Exercice 49 (*)

Déterminer le développement limité à l'ordre n en x=0 de la fonction $x\mapsto \frac{1}{\sqrt{1-x}}$ en utilisant la formule de Taylor-Young.

Exercice 50

Déterminer un équivalent en 0 de la fonction $f: x \mapsto x(2 + \cos x) - 3\sin x$.

Exercice 51

Déterminer le développement limité en 0 à l'ordre 6 de $f: x \mapsto \sqrt{1+x^2}$.

Exercice 52

Étudier la limite en 0 de la fonction $f: x \mapsto \frac{1 - \cos x}{1 - \sqrt{1 + x^2}}$

XV. Intégration

Exercice 53

Déterminer le développement limité à l'ordre n en x = -1 de $x \mapsto 1 + x + x^2 + x^3$. (on pourra utiliser le changement de variable X = x + 1)

Exercice 54

Déterminer le développement limité à l'ordre 3 en x = 1 de $x \mapsto \frac{1+x^3}{1+x+x^2}$. (on pourra utiliser le changement de variable X = x - 1)

Exercice 55

Étudier la limite en 1 de la fonction $f: x \mapsto \frac{\ln x}{1 - \sqrt{x}}$. (on pourra utiliser le changement de variable X = x - 1)

Exercice 56 (*)

Montrer que la courbe représentative $\mathcal C$ de la fonction $f:x\mapsto x\sqrt{\frac{x+1}{x-1}}$ admet une asymptote oblique $\mathcal T$ en $+\infty$ puis étudier les positions relatives de $\mathcal C$ et $\mathcal T$ au voisinage de $+\infty$. (on pourra utiliser le changement de variable $X=\frac{1}{x}$ et calculer un développement limité)

Exercice 57

Montrer que la fonction $f: x \mapsto \frac{1}{\sin x} - \frac{1}{x}$ se prolonge par continuité en 0 en une fonction dérivable en 0 et déterminer f(0) et f'(0).

Exercice 58

Déterminer le développement limité à l'ordre 3 en x=0 de la fonction $x\mapsto \sqrt{1+\sin x}$.

Exercice 59

Déterminer une valeur approchée de $\arctan \frac{1}{10}$ en utilisant le développement limité de la fonction arctan en 0 à l'ordre 4.

Exercice 60

Déterminer le développement limité à l'ordre 5 de la fonction arccos en 0. (on pourra procéder par intégration)

Exercice 61 (**)

Déterminer un développement limité en 0 à l'ordre 3 de la fonction $f: x \mapsto \frac{1}{\sqrt{(16-x^2)(25-x^2)}}$. En déduire une valeur approchée rationnelle de $\int_0^1 \frac{\mathrm{d}t}{\sqrt{(16-t^2)(25-t^2)}}$.

Réponses

- 1) On calcule l'aire d'un trapèze, on obtient 6.
- 2) On calcule l'aire de deux triangles, on obtient $=2-\frac{9}{2}=-\frac{5}{2}$.
- 3) $\frac{2}{\pi}$.
- 4) En termes d'aires, on a $|a_1 + a_2 + \dots + a_n| \le |a_1| + |a_2| + \dots + |a_n|$.
- 5) $\frac{1}{n} \sum_{k=1}^{k=n} \left(\frac{k}{n}\right)^2 = \frac{n(n+1)(2n+1)}{6n^3} \underset{n \to +\infty}{\longrightarrow} = \frac{1}{3}.$
- **6)** On pose $x_k = a + k \frac{b-a}{n}$ et on part de $\sum_{k=0}^{k=n-1} \frac{b-a}{2n} [f(x_k) + f(x_{k+1})].$
- 7) On aurait $F(x) = C_1$ si x < 0 et $F(x) = C_2$ si x > 0, et comme F doit être dérivable donc continue, nécessairement F = Cte d'où f = 0 ce qui est contradictoire.
- **8)** ln 2.
- **9**) 1.
- **10)** $x \mapsto (x-1)e^x$.
- 11) $\frac{\pi}{2}$ ce qui correspond à l'aire d'un demi-disque de rayon 1.
- 12) $\frac{2}{15}$.
- **13)** 0.
- **14**) *e*.
- 15) $\frac{1}{2}$.
- **16)** $c_0 = \lim_{x \to 0} f(x), c_1 = \lim_{x \to 0} \frac{f(x) c_0}{x}, c_1 = \lim_{x \to 0} \frac{f(x) c_0 c_1 x}{x^2}, \text{ etc, d'où } c_k = \lim_{x \to 0} \frac{1}{1 x} = 1.$
- 17) $\cos x + \sin x = 1 + x \frac{1}{2}x^2 \frac{1}{6}x^3 + \frac{1}{24}x^4 + o(x^4)$ et $e^x \sin x = x + x^2 + \frac{1}{3}x^3 + o(x^4)$.
- **18)** $e^{\sin x} = 1 + x + \frac{1}{2}x^2 + o(x^3)$ et $e^{\cos x} = e \frac{e}{2}x^2 + o(x^3)$.
- **19)** $\frac{1}{\cos x} = 1 + \frac{1}{2}x^2 + \frac{5}{24}x^4 + o(x^5)$ et $\tan x = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + o(x^5)$.
- **20)** $\ln(1-x) = -x \frac{1}{2}x^2 \frac{1}{3}x^3 \dots \frac{1}{n}x^n + o(x^n).$
- **21)** $\arctan x = x \frac{1}{3}x^3 + \frac{1}{5}x^5 \frac{1}{7}x^7 + \dots + \frac{(-1)^n}{2n+1}x^{2n+1} + o(x^{2n+1}).$
- **22)** $\int_{-\frac{\sqrt{2}}{2}}^{\frac{+\sqrt{2}}{2}} 1 x^2 \, dx \int_{-\frac{\sqrt{2}}{2}}^{\frac{+\sqrt{2}}{2}} x^2 \, dx = \frac{2}{3}\sqrt{2}.$
- **23**) $\sqrt{3} \frac{1}{3}$.
- **24**) $\frac{1}{2}$.
- **25)** Si $\int_a^b f(x) dx \ge 0$ alors la fonction g = |f| f positive est d'intégrale nulle donc nulle et $f = |f| \ge 0$, si $\int_a^b f(x) dx \le 0$ alors la fonction g = |f| + f positive est d'intégrale nulle donc nulle et $f = -|f| \le 0$.

- **26)** On applique le théorème de Rolle à la fonction $F: x \mapsto \int_a^x f(t) dt$ sur l'intervalle [a; b].
- **27**) ln 2.
- **28)** Si x < -1 alors $F(x) = \ln(-1 x)$ d'où $F'(x) = \frac{-1}{-1 x} = f(x)$.
- **29)** $x \mapsto -\ln(\cos x)$.
- **30)** $F(x) = \frac{1}{2}(\sin x \cos x)e^x$.
- **31)** $F(x) = \frac{1}{10}(5 \cos 2x 2\sin 2x)e^x$.
- **32)** $F(x) = \arctan x + \frac{1}{2}\ln(1+x^2).$
- **33)** $F(x) = \frac{1}{4}\ln(1+x^2) + \frac{1}{2}\arctan x + \frac{1}{2}\ln|1+x|$.
- **34)** $\sqrt{3} \frac{\pi}{3}$.
- **35**) $\frac{11}{6}$.
- **36**) $\frac{16}{15}$.
- **37)** On a $\phi(x) = F(x^2) F(x)$ avec F primitive de $\frac{1}{\ln x}$ d'où $\phi'(x) = \frac{x-1}{\ln x}$.
- 38) $\frac{\pi}{4} \frac{1}{2} \ln 2$.
- **39)** $\frac{1}{2}$, en remarquant que $t^3 e^{t^2} = \frac{1}{2} t^2 \times 2t e^{t^2}$.
- **40)** $x \mapsto x \arctan x \frac{1}{2} \ln(1 + x^2).$
- **41)** $\frac{e^2-3}{4}$ en remarquant que $I_n=\int_1^e t(\ln t)^n dt$ vérifie la relation de récurrence $I_n=\frac{1}{2}(e^2-nI_{n-1})$.
- **42**) $\frac{2}{15}$.
- **43**) 1.
- **44)** En posant $x = \frac{\pi}{4} t$ on obtient $I = \frac{1}{4}\pi \ln 2 I$ d'où $I = \frac{1}{8}\pi \ln 2$.
- **45)** $\int_{a}^{a+T} f(t) dt = \int_{a}^{0} f(t) dt + \int_{0}^{T} f(t) dt + \int_{T}^{a+T} f(t) dt = \int_{a}^{0} f(t) dt + \int_{0}^{T} f(t) dt + \int_{0}^{a} f(t) dt = \int_{0}^{T} f(t) dt$
- **46)** On prouve la formule pour f(x) = 1, f(x) = x, $f(x) = x^2$ et $f(x) = x^3$ puis on procède par linéarité de l'intégrale.
- 47) On prouve la formule pour f(x) = 1, f(x) = x, $f(x) = x^2$ et $f(x) = x^3$ puis on procède par linéarité de l'intégrale.
- **48)** On remarque que $\ln(1+x) x + \frac{x^2}{2} = \int_0^x \frac{(x-t)^2}{2} \ln^{(3)}(1+t) dt \ge 0$ et que $\ln(1+x) x + \frac{x^2}{2} \frac{x^3}{3} = \int_0^x \frac{(x-t)^3}{6} \ln^{(4)}(1+t) dt \le 0$.
- **49)** $\frac{1}{\sqrt{1-x}} = 1 + \sum_{k=1}^{k=n} \frac{1 \times 3 \times 5 \times \cdots \times (2k-1)}{k! \ 2^k} x^k + o(x^n).$

50)
$$f(x) \sim \frac{x^5}{60}$$
.

51)
$$1 + \frac{1}{2}x^2 - \frac{1}{8}x^4 + \frac{1}{16}x^6 + o(x^6)$$
.

52)
$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x < 0}} f(x) = -1.$$

53)
$$2(x+1) - 2(x+1)^2 + (x+1)^3$$
 si $n \ge 3$.

54)
$$\frac{2}{3} + \frac{1}{3}(x-1) + \frac{4}{9}(x-1)^2 - \frac{2}{9}(x-1)^3 + o((x-1)^3).$$

55)
$$\lim_{\substack{x \to 1 \\ x > 1}} f(x) = \lim_{\substack{x \to 1 \\ x < 1}} f(x) = -2.$$

56) On montre que
$$f(x) = \frac{1}{X} + 1 + \frac{1}{2}X + o(X) = x + 1 + \frac{1}{2x} + o\left(\frac{1}{x}\right)$$
.

57)
$$\frac{1}{\sin x} - \frac{1}{x} = \frac{1}{6}x + o(x)$$
 donc $f(0) = 0$ et $f'(0) = \frac{1}{6}$.

58)
$$\sqrt{1+\sin x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 - \frac{1}{48}x^3 + o(x^3).$$

59)
$$\arctan \frac{1}{10} \simeq \frac{299}{3000}$$
.

60)
$$\arccos x = \frac{\pi}{2} - x - \frac{x^3}{6} - \frac{3x^5}{40} + o(x^6).$$

61)
$$f(x) = \frac{1}{0.000} + \frac{41}{16000}x^2 + o(x^3)$$
 d'où $F(1) - F(0) \simeq \frac{2441}{48000}$.