XI. Limites

1 Limite d'une fonction

Définition 1. On dit qu'un fonction de variable réelle à valeur réelles est définie au voisinage de $a \in \mathbb{R}$ si il existe un réel $\delta > 0$ tel que f soit définie sur $a \in \mathbb{R}$ sur $a = \delta$, $a \in \mathbb{R}$ sur $a = \delta$.

Exercice 1. Montrer que la fonction ln est définie au voisinage de 1 et au voisinage de 0.

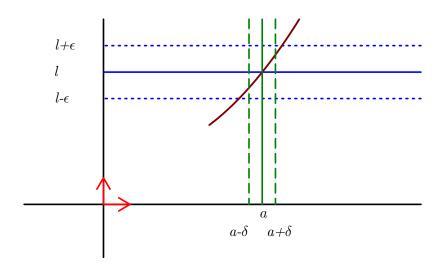
Définition 2. On dit qu'une fonction de variable réelle à valeur réelles est définie au voisinage de $+\infty$ si il existe un réel M tel que f soit définie sur M; $+\infty$ et on dit que f est définie au voisinage de $-\infty$ si il existe un réel M tel que f soit définie sur M.

Exercice 2. Montrer que la fonction $f: x \mapsto \ln(x^2 - 3)$ est définie au voisinage de $+\infty$.

Définition 3. Limite finie en une valeur finie

On considère une fonction $f \in \mathcal{F}(I,\mathbb{R})$ définie au voisinage de $a \in \mathbb{R}$, on dit que :

- f admet une limite $l \in \mathbb{R}$ en a si pour tout $\epsilon > 0$ il existe $\delta > 0$ tel que pour tout $x \in I$ avec $|x-a| \leq \delta$ on a $|f(x) l| \leq \epsilon$, on note alors $\lim_{x \to a} f(x) = l$.
- f admet une limite $l \in \mathbb{R}$ à gauche en a si pour tout $\epsilon > 0$ il existe $\delta > 0$ tel que pour tout $x \in I$ avec $|x a| \le \delta$ et x < a on a $|f(x) l| \le \epsilon$, on note alors $\lim_{x \to a} f(x) = l$.
- f admet une limite $l \in \mathbb{R}$ à droite en a si pour tout $\epsilon > 0$ il existe $\delta > 0$ tel que pour tout $x \in I$ avec $|x a| \le \delta$ et x > a on a $|f(x) l| \le \epsilon$, on note alors $\lim_{x \to a} f(x) = l$.



Exercice 3. On pose f(x) = 2x + 3, montrer que $\lim_{x \to 1} f(x) = 5$. (on pourra procéder par résolution de l'inéquation $|f(x) - 5| \le \epsilon$ d'inconnue x)

Propriété 1. Si une fonction admet une limite finie alors celle-ci est nécessairement unique.

Propriété 2. Une fonction f tend vers l en a si et seulement si la fonction f-l tend vers 0 en a.

Remarque 1. Si f admet une limite l en a elle admet a fortiori une limite l à gauche en a et une limite l à droite en a.

Contre-exemple 1. La fonction
$$f: \mathbb{R} \to \mathbb{R}$$
 admet une limite à gauche et à droite en 0 $x \mapsto \begin{cases} 0 & si & x \neq 0 \\ 1 & si & x = 0 \end{cases}$

mais n'admet pas de limite en 0.

Propriété 3. Si une fonction $f \in \mathcal{F}(I,\mathbb{R})$ admet une limite en $a \in I$ alors $\lim_{x \to a} f(x) = f(a)$.

Propriété 4. Une fonction admettant une limite finie en a est bornée au voisinage de a.

Définition 4. Limite infinie en une valeur finie

On considère une fonction $f \in \mathcal{F}(I,\mathbb{R})$ définie au voisinage de $a \in \mathbb{R}$, on dit que :

- f tend $vers + \infty$ en a si pour tout $M \in \mathbb{R}$ il existe $\delta > 0$ tel que pour tout $x \in I$ avec $|x a| \le \delta$ on a $f(x) \ge M$, on note alors $\lim_{x \to a} f(x) = +\infty$.
- f tend vers $-\infty$ en a si pour tout $M \in \mathbb{R}$ il existe $\delta > 0$ tel que pour tout $x \in I$ avec $|x a| \le \delta$ on a $f(x) \le M$, on note alors $\lim_{x \to a} f(x) = -\infty$.

Remarque 2. Une fonction admettant une limite infinie en a n'est pas définie en a.

Remarque 3. On peut également définir les limites infinies à gauche ou a droite de a.

Exercice 4. On pose
$$f(x) = \frac{1}{x^2}$$
, montrer que $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = +\infty$. (on pourra procéder par résolution de l'inéquation $f(x) \ge M$ d'inconnue x)

Propriété 5. Une fonction f tend vers $+\infty$ en a si et seulement si la fonction -f tend vers $-\infty$ en a.

Définition 5. Limite finie en l'infini

On considère une fonction $f \in \mathcal{F}(I,\mathbb{R})$ définie au voisinage de $+\infty$ ou $-\infty$, on dit que :

- f tend vers l en $+\infty$ si pour tout $\epsilon > 0$ il existe $M \in \mathbb{R}$ tel que pour tout $x \in I$ avec $x \ge M$ on a $|f(x) l| \le \epsilon$, on note alors $\lim_{x \to +\infty} f(x) = l$.
- f tend vers l en $-\infty$ si pour tout $\epsilon > 0$ il existe $M \in \mathbb{R}$ tel que pour tout $x \in I$ avec $x \leq M$ on a $|f(x) l| \leq \epsilon$, on note alors $\lim_{x \to -\infty} f(x) = l$.

Exercice 5. On pose
$$f(x) = \frac{x}{x+1}$$
, montrer que $\lim_{x \to +\infty} f(x) = 1$. (on pourra procéder par résolution de l'inéquation $|f(x) - 1| \le \epsilon$ d'inconnue x)

Définition 6. Limite infinie en l'infini

On considère une fonction $f \in \mathcal{F}(I,\mathbb{R})$ définie au voisinage de $+\infty$ ou $-\infty$, on dit que :

- f tend vers $+\infty$ en $+\infty$ si pour tout $M \in \mathbb{R}$ il existe $N \in \mathbb{R}$ tel que pour tout $x \in I$ avec $x \geqslant N$ on a $f(x) \geqslant M$, on note alors $\lim_{x \to +\infty} f(x) = +\infty$.
- f tend $vers -\infty$ $en +\infty$ si pour tout $M \in \mathbb{R}$ il existe $N \in \mathbb{R}$ tel que pour tout $x \in I$ avec $x \ge N$ on a $f(x) \le M$, on note alors $\lim_{x \to +\infty} f(x) = -\infty$.

Exercice 6. On pose f(x) = 1 - x, montrer que $\lim_{x \to +\infty} f(x) = -\infty$. (on pourra procéder par résolution de l'inéquation $f(x) \leq M$ d'inconnue x)

Exercice 7. Donner la définition d'une fonction f tendant vers $-\infty$ en $-\infty$.

2 Opérations sur les limites, comparaison des limites

Propriété 6. Limites et opérations

On considère deux fonctions $f, g \in \mathcal{F}(I, \mathbb{R})$ définies au voisinage de $a \in \mathbb{R}$ telles que $\lim_{x \to a} f(x) = l_1 \in \mathbb{R}$ et $\lim_{x \to a} g(x) = l_2 \in \mathbb{R}$, alors :

- la fonction f + g admet $l_1 + l_2$ pour limite en a.
- la fonction $f \times g$ admet $l_1 \times l_2$ pour limite en a.

Remarque 4. On peut étendre la propriété à la différence et au quotient si la fonction au dénominateur ne s'annule pas et si sa limite est non nulle.

On admet que l'on peut démontrer les autres propriétés des limites :

$\lim_{x \to u(x)$	l	l	l	$+\infty$	$-\infty$	$+\infty$
$\lim_{x \to 0} v(x)$	l'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim_{x \to \infty} [u(x) + v(x)]$	l + l'	$+\infty$	$-\infty$	$+\infty$	$-\infty$?

$\lim_{x \to u(x)} u(x)$	l	$l \neq 0$	0	∞
$\lim_{x \to 0} v(x)$	l'	∞	∞	∞
$\lim_{x \to \infty} [u(x) \times v(x)]$	$l \times l'$	∞	?	∞

Le signe de la limite s'obtenant au moyen de la règle des signes pour la multiplication.

$\lim_{x \to u(x)$	l	$l \neq 0$	∞	l	∞	0
$\lim_{x \to 0} v(x)$	$l' \neq 0$	0 (signe constant)	l'	∞	∞	0
$\lim_{x \to \infty} \frac{u(x)}{v(x)}$	$\frac{l}{l'}$	80	∞	0	?	?

Le signe de la limite s'obtenant au moyen de la règle des signes pour la division.

Exercice 8. Déterminer la limite en $+\infty$ de la fonction $f: x \mapsto \frac{\sqrt{2+x}}{1+\sqrt{2x}}$.

Propriété 7. Composition de limites

On considère deux fonctions $f \in \mathcal{F}(I,J)$ et $g \in \mathcal{F}(J,\mathbb{R})$ telles que $\lim_{x \to a} f(x) = b \in \mathbb{R}$ et $\lim_{y \to b} g(y) = l \in \mathbb{R}$ alors la fonction $g \circ f \in \mathcal{F}(I,\mathbb{R})$ admet l pour limite en a.

Exercice 9. Déterminer la limite de la fonction $f: x \mapsto e^{-\frac{1}{x^2}}$ en 0.

Propriété 8. Image d'une suite par une fonction

On considère une fonction $f \in \mathcal{F}(I,\mathbb{R})$ définie au voisinage de $a \in \mathbb{R}$ et admettant une limite finie en a ainsi qu'une suite $(u_n)_{n\in\mathbb{N}}$ à valeurs dans I qui converge vers a alors la suite $(f(u_n))_{n\in\mathbb{N}}$ converge vers $\lim_{x\to a} f(x)$.

Exercice 10. On considère une suite $(u_n)_{n\in\mathbb{N}}$ définie par la relation de récurrence $u_{n+1} = \frac{u_n+1}{u_n+2}$ pour tout $n\in\mathbb{N}$. On suppose que la suite $(u_n)_{n\in\mathbb{N}}$ est positive et convergente, que peut-on dire de sa limite l?

Propriété 9. Comparaison de limites

On considère deux fonctions $f, g \in \mathcal{F}(I, \mathbb{R})$ définies au voisinage de $a \in \mathbb{R}$ telles que $\lim_{x \to a} f(x) = l_1 \in \mathbb{R}$ et $\lim_{x \to a} g(x) = l_2 \in \mathbb{R}$, si $f(x) \leqslant g(x)$ pour tout $x \in I$ alors $l_1 \leqslant l_2$.

Exercice 11. La propriété est-elle encore vérifiée si on remplace les inégalités par des inégalités strictes?

3 Théorèmes d'existence de limites

Théorème 1. Théorème d'encadrement

On considère trois fonctions $f, g, h \in \mathcal{F}(I, \mathbb{R})$ définies au voisinage de $a \in \mathbb{R}$, alors :

- $si\ f(x) \leq g(x) \leq h(x)$ pour tout $x \in I$ et $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = l$ alors $\lim_{x \to a} g(x) = l$. $si\ f(x) \leq g(x)$ pour tout $x \in I$ et $\lim_{x \to a} f(x) = +\infty$ alors $\lim_{x \to a} g(x) = +\infty$. $si\ f(x) \leq g(x)$ pour tout $x \in I$ et $\lim_{x \to a} g(x) = -\infty$ alors $\lim_{x \to a} f(x) = -\infty$.

Exercice 12. Déterminer la limite en $+\infty$ de la fonction $f: x \mapsto \frac{\sin x}{x}$.

Théorème 2. Théorème de la limite monotone

On considère une fonction $f \in \mathcal{F}(I,\mathbb{R})$ croissante définie au voisinage de $+\infty$, alors:

- si la fonction f n'est pas majorée on a lim f(x) = +∞.
 si la fonction f est majorée on a lim f(x) = l ∈ ℝ avec l plus petit majorant de f sur I.

Remarque 5. Ce théorème peut s'étendre aux fonctions décroissantes et à une limite en $-\infty$.

Continuité d'une fonction 4

Définition 7. Une fonction $f \in \mathcal{F}(I,\mathbb{R})$ admettant une limite finie en $a \in I$ est dite continue en a, on a alors $\lim f(x) = f(a)$. Une fonction continue en tout point de I est dite continue sur I, on note $\mathcal{C}(I,\mathbb{R})$ l'ensemble des fonctions à valeurs réelles continues sur I.

Exemple 1. On admet que les fonctions usuelles (fonctions puissances, exponentielles, logarithmes, circulaires) sont continues sur leurs intervalles de définition.

Exercice 13. Montrer que la fonction partie entière n'est pas continue en 0.

Remarque 6. Une fonction dont la représentation graphique peut se tracer sans lever le crayon est continue.

Définition 8. Une fonction f à valeurs réelles définie au voisinage de $a \in \mathbb{R}$ mais pas en a et admettant des limites finies à gauche et à droite en a égales peut se prolonger en une fonction f continue en a appelée

Exercice 14. Montrer que la fonction $f: x \mapsto e^{-\frac{1}{x^2}}$ peut se prolonger par continuité sur \mathbb{R} .

Propriété 10. Continuité et opérations

On considère deux fonctions $u, v \in \mathcal{C}(I, \mathbb{R})$, alors les fonctions u + v et $u \times v$ sont continues sur I.

Remarque 7. On peut étendre la propriété à la différence et au quotient si la fonction au dénominateur ne s'annule pas.

Exercice 15. Montrer que la fonction $f: x \mapsto \frac{x^2 - \sin x}{e^x + 1}$ est continue sur \mathbb{R} .

Propriété 11. Composition de fonctions continues

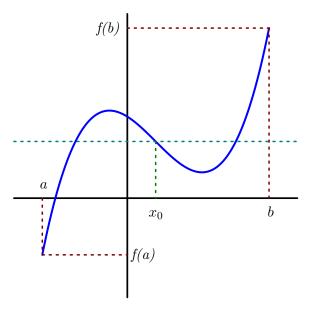
On considère deux fonctions $u \in \mathcal{C}(I,J)$ et $v \in \mathcal{C}(J,\mathbb{R})$, alors la fonction $v \circ u$ est continue sur I.

Exercice 16. Montrer que la fonction $f: x \mapsto \sqrt{e^x - x}$ est continue sur \mathbb{R} .

5 Propriétés des fonctions continues

Théorème 3. Théorème des valeurs intermédiaires

On considère une fonction f à valeurs réelles continue sur [a,b], alors pour tout réel $y \in [f(a),f(b)]$ il existe $x_0 \in [a,b]$ tel que $f(x_0) = y$.



Remarque 8. On en déduit qu'une fonction f à valeurs réelles continue sur [a,b] telle que f(a) et f(b) soient de signes contraires s'annule au moins une fois sur l'intervalle [a,b].

Exercice 17. Montrer que la fonction $f: x \mapsto x^3 - x + 1$ s'annule sur \mathbb{R} .

Propriété 12. Image directe d'un intervalle par une fonction continue

L'image directe d'un intervalle par une fonction continue à valeurs réelles est un intervalle, l'image directe d'un segment par une fonction continue à valeurs réelles est un segment.

Exercice 18. Déterminer l'image directe de l'intervalle]-1;2] puis du segment [-1;2] par la fonction carré.

Théorème 4. Théorème de la bijection

Une fonction à valeurs réelles continue et strictement monotone sur un intervalle I est une bijection de I dans f(I), son application réciproque est continue et strictement monotone sur f(I) de même sens de variation que f.

Exercice 19. Montrer que la fonction cosinus est bijective de $[-\pi;0]$ dans [-1;1] et préciser son application réciproque.

Corollaire 1. On considère une fonction f à valeurs réelles continue et strictement monotone sur [a,b], alors pour tout réel $y \in [f(a), f(b)]$ il existe un unique $x_0 \in [a,b]$ tel que $f(x_0) = y$.

Exercice 20. Montrer que l'équation $x^5 = 5(x-1)$ admet une unique solution réelle et en donner un encadrement à l'unité.

Relations de comparaison

Définition 9. On considère deux fonctions à valeurs réelles f et g définies et ne s'annulant pas au voisinage $de \ a \in \mathbb{R}$, on $dit \ que$:

- la fonction f est dominée par la fonction g au voisinage de a si la fonction $\frac{f}{g}$ est bornée au voisinage de a, on note f = O(g).
- la fonction f est négligeable devant la fonction g au voisinage de a si $\lim_{x\to a} \frac{f(x)}{g(x)} = 0$, on note
- la fonction f est équivalente à la fonction g au voisinage de a si $\lim_{x\to a} \frac{f(x)}{g(x)} = 1$, on note $f \sim g$.

Remarque 9. On définit de la même façon les relations de comparaison au voisinage de $+\infty$ ou $-\infty$.

Exemple 2.
$$x = o(x^2), x^2 = o(x) \text{ et } x \sim x^2$$
.

Propriété 13. Si f = o(g) ou $f \sim g$ alors f = O(g).

Propriété 14. $f \sim g$ équivant à f - g = o(g).

Exercice 21. Que signifie pour une fonction f à valeurs réelles que f = 0, que f = 0 (1), que f = 0 $f \underset{x \to a}{\sim} 1$?

Propriété 15. On considère trois fonctions f, g et h à valeurs réelles définies et ne s'annulant pas au $voisinage de a \in \mathbb{R}$:

- $si\ f \sim_{x \to a} g \ alors \ g \sim_{x \to a} f. \ (sym\'etrie)$ $si\ f \sim_{x \to a} g \ et\ g \sim_{x \to a} h \ alors \ f \sim_{x \to a} h. \ (transitivit\'e)$

Remarque 10. La propriété reste valable au voisinage de $+\infty$ ou de $-\infty$.

Propriété 16. Équivalent d'un produit et d'un quotient

On considère quatre fonctions f_1, f_2, g_1 et g_2 à valeurs réelles définies et ne s'annulant pas au voisinage de

$$si\ f_1 \underset{x \to a}{\sim} g_1 \ et\ f_2 \underset{x \to a}{\sim} g_2 \ alors\ f_1 f_2 \underset{x \to a}{\sim} g_1 g_2 \ et\ \frac{f_1}{f_2} \underset{x \to a}{\sim} \frac{g_1}{g_2}.$$

Remarque 11. La propriété reste valable au voisinage de $+\infty$ ou de $-\infty$.

Exercice 22. Déterminer la limite de la fonction $f: x \mapsto \frac{2x^2 - 1}{x^2 + x + 1}$ en $+\infty$ en utilisant les équivalents.

Propriété 17. Comparaison des fonctions usuelles

$$\bullet \quad x^a = o(b^x) \text{ si } b > 1$$

Exercice 23. Déterminer un équivalent de la fonction $f: x \mapsto \frac{x^2 + \ln x}{x^2 - 2^x}$ au voisinage de $+\infty$.

Exercices supplémentaires

Exercice 24

Montrer que la fonction $f: x \mapsto \ln\left(\frac{1+x}{1-x}\right)$ est définie au voisinage de 0.

Exercice 25

Montrer que la fonction $f: x \mapsto \ln\left(\frac{x^2+1}{x^2-1}\right)$ est définie au voisinage de $+\infty$ et au voisinage de $-\infty$.

Exercice 26

On considère une fonction f définie sur \mathbb{R} , montrer que $\lim_{x\to a} f(x) = l \Leftrightarrow \lim_{x\to a} -f(x) = -l$.

Exercice 27 (*)

Montrer que toute fonction tendant vers 2 en a est minorée par 1 au voisinage de a.

Exercice 28

La fonction partie entière admet-elle une limite à gauche en 0, une limite à droite en 0, une limite en 0?

Exercice 29 (*)

La fonction $f: x \mapsto |-|x||$ admet-elle une limite à gauche en 0, une limite à droite en 0, une limite en 0?

Exercice 30

On considère une fonction f définie sur \mathbb{R} , montrer que $\lim_{x\to +\infty} f(x) = l \Leftrightarrow \lim_{x\to +\infty} -f(x) = -l$.

Exercice 31

Étudier la limite en 0 à droite de la fonction $f: x \mapsto \ln x + \frac{1}{x}$.

Exercice 32

Étudier la limite en $+\infty$ puis la limite en 0 à droite de la fonction $f: x \mapsto \frac{(2x + \sqrt{x})^{10}}{(x^2 + 4x)^5}$.

Exercice 33

Étudier la limite en $+\infty$ de la fonction $f: x \mapsto \arctan\left(\frac{1-x^2}{1+x^2}\right)$.

Exercice 34 (*)

Étudier la limite en 0 de la fonction $f: x \mapsto \frac{xe^{\frac{1}{x^2}}}{x^2+1}$.

Exercice 35 (*)

Étudier la limite en $+\infty$ de la fonction $f: x \mapsto \ln(x^2 + 1) - x$.

Exercice 36 (*)

Étudier la limite à gauche et à droite en 1 des fonctions $f: x \mapsto \frac{x^2 - 3x + 2}{(x-1)^2}$ et $g: x \mapsto \frac{x^2 - 3x + 2}{x^2 - 1}$.

Exercice 37 (*)

Étudier la limite en $+\infty$ de la fonction $f: x \mapsto \sqrt{x^2 + x} - x$.

Exercice 38 (*)

Étudier la limite à gauche et à droite en 0 de la fonction $f: x \mapsto \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$.

Exercice 39 (*)

La fonction $f: x \mapsto x \cos x$ admet-elle une limite en $+\infty$?

Exercice 40

Montrer que la fonction $f: x \mapsto x[x]$ est continue en 0.

Exercice 41 (*)

Montrer que la fonction $f: x \mapsto \begin{cases} 0 & \text{si } x \leq 0 \\ x \ln x & \text{si } x > 0 \end{cases}$ est continue sur \mathbb{R} .

Exercice 42

Montrer que la fonction $f: x \mapsto \frac{x^2-1}{x-1}$ peut se prolonger par continuité sur $\mathbb R$ en une fonction $\tilde f$ que l'on explicitera.

Exercice 43

La fonction $f: x \mapsto \frac{|x|}{x}$ peut-elle se prolonger par continuité en 0?

Exercice 44 (*)

Montrer que la fonction $f: x \mapsto x \left\lfloor \frac{1}{x} \right\rfloor$ peut se prolonger par continuité en 0.

Exercice 45

Montrer que la fonction $f: x \mapsto \frac{\arcsin x}{x + 3e^x}$ est définie et continue sur [-1; 1].

Exercice 46

Montrer que la fonction $f: x \mapsto \ln(e^x - x)$ est définie et continue sur \mathbb{R} .

Exercice 47 (*)

Montrer que la fonction $f: x \mapsto \lfloor x \rfloor + \sqrt{x - \lfloor x \rfloor}$ est continue sur \mathbb{R} .

Exercice 48 (*)

On considère une fonction $f \in \mathcal{C}(\mathbb{R}, \mathbb{R})$ admettant une limite finie en $-\infty$ et $+\infty$. Montrer que f est bornée.

Exercice 49

Montrer que l'équation $x^3 - x + 1 = 0$ admet une unique solution réelle et en donner un encadrement à l'unité.

Exercice 50

Déterminer le nombre de solutions réelles de l'équation $8x^7 - 7x - 1 = 0$.

Exercice 51 (*)

Montrer que toute fonction $f \in \mathcal{C}([0;1],[0;1])$ admet un point fixe. (On pourra considérer la fonction g définie par g(x) = x - f(x))

Exercice 52

Déterminer l'image directe de l'intervalle]-1;1[par la fonction $f:x\mapsto x^4$.

Exercice 53

Déterminer l'image directe de l'intervalle [-1;1] par la fonction $f:x\mapsto x^3-x$.

Exercice 54 (**)

Déterminer une fonction f définie et continue sur \mathbb{R} telle que f([1;2]) = [3;4].

Exercice 55

Montrer que la fonction $f: x \mapsto \ln(x+1)$ réalise une bijection de $[0; +\infty[$ sur $[0; +\infty[$ et expliciter son application réciproque g.

Exercice 56

Montrer que la fonction $f: x \mapsto \frac{2x}{x+1}$ réalise une bijection de [0;1] sur [0;1] et expliciter son application réciproque g.

Exercice 57 (*)

Montrer que la fonction $f: x \mapsto \frac{x^2+1}{2x}$ réalise une bijection de $[1; +\infty[$ sur $[1; +\infty[$ et expliciter son application réciproque q.

Exercice 58 (*)

Montrer que la fonction $f: x \mapsto \frac{x}{1+|x|}$ réalise une bijection de \mathbb{R} sur]-1;1[et expliciter son application réciproque g.

Exercice 59

Montrer que $e^{\sqrt{x}} = o(e^x)$.

Exercice 60

On considère la fonction $f: x \mapsto \frac{x^3-1}{2x^2+1}$. Déterminer un équivalent simple de f au voisinage de $+\infty$.

Exercice 61 (\star)

On considère la fonction $f: x \mapsto \frac{x^3 - 1}{2x^2 + 1}$

Déterminer un équivalent simple de f au voisinage de 1.

Exercice 62 (\star)

On considère trois fonctions f, g et h à valeurs réelles définies sur un voisinage de $+\infty$. Montrer que si f = o(g) et g = O(h) alors f = o(h).

Exercice 63 (*)

Déterminer un équivalent simple en $+\infty$ de la fonction $f: x \mapsto |x - \ln x|$.

Exercice 64 (\star)

Déterminer un équivalent simple en $+\infty$ de la fonction $f: x \mapsto \sqrt{x^2 + 1} - x$.

Exercice 65 (*)

On considère deux fonctions f, g à valeurs réelles telles que $f \underset{+\infty}{\sim} g$, a-t-on $e^f \underset{+\infty}{\sim} e^g$?

Exercice 66 (*)

Montrer que la fonction $f: x \mapsto xe^x$ réalise une bijection de $[0; +\infty[$ sur $[0; +\infty[$ et déterminer un équivalent au voisinage de 0 de son application réciproque q.

Exercice 67 (\star)

Montrer que si $f \sim g$ alors les fonctions à valeurs réelles f et g ont même signe au voisinage de a.

Réponses

- 1) On considère les voisinages $]\frac{1}{2}; \frac{3}{2}[$ et]0; 1[.
- 2) On considère le voisinage $]\sqrt{3}; +\infty[$.
- 3) On considère $\delta = \frac{\epsilon}{2}$.
- 4) On considère $\delta = \frac{1}{\sqrt{M}}$ dans le cas M > 0 et δ quelconque sinon.
- 5) On considère $M = \frac{1}{\epsilon} 1$.
- 6) On considère N = 1 M.
- 7) La fonction f tend vers $-\infty$ en $-\infty$ si pour tout $M \in \mathbb{R}$ il existe $N \in \mathbb{R}$ tel que pour tout $x \in I$ avec $x \leq N$ on a $f(x) \leq M$.
- 8) $\lim_{x \to +\infty} f(x) = \frac{\sqrt{2}}{2}$.
- 9) $\lim_{\substack{x\to 0\\x<0}} = 0 \text{ et } \lim_{\substack{x\to 0\\x>0}} = 0.$
- **10)** On a $l = \frac{l+1}{l+2}$ et $l \in [0; +\infty[$ d'où $l = \frac{\sqrt{5}-1}{2}$.
- 11) On considère la limite en $+\infty$ de $f: x \mapsto -\frac{1}{x}$ et $g: x \mapsto \frac{1}{x}$.
- **12)** 0.
- 13) $\lim_{\substack{x\to 0\\x<0}} \lfloor x \rfloor = -1$ et $\lim_{\substack{x\to 0\\x>0}} \lfloor x \rfloor = 0$ donc la fonction partie entière n'admet pas de limite en 0.
- 14) On remarque que $\lim_{x\to 0} f(x) = 0$.
- 15) f est de la forme $\frac{u}{v}$ avec u et v continues sur \mathbb{R} et v ne s'annulant pas sur \mathbb{R} .
- **16)** f est de la forme $v \circ u$ avec u continue sur \mathbb{R} à valeurs dans \mathbb{R}_+ et v continue sur \mathbb{R}_+ .
- **17)** f est continue sur \mathbb{R} avec f(-2) = -5 < 0 et f(-1) = 1 > 0.
- **18)** [0; 4].
- **19)** –arccos.
- **20)** $-2 \leqslant x_0 \leqslant -1$ en étudiant les variations de la fonction $\varphi : x \mapsto x^5 5x + 5$.
- **21)** $\lim_{x\to a} f(x) = 0$, f est bornée au voisinage de a, $\lim_{x\to a} f(x) = 1$.
- **22)** 2.
- **23)** $-\frac{x^2}{2^x}$.
- **24)** La fonction f est définie sur]-1;1[
- **25)** La fonction f est définie sur $]-\infty;-1[\cup]1;+\infty[$
- **26)** On remarque que |-f(x)-(-l)| = |f(x)-l|.
- **27)** On utilise la définition de la limite avec $\epsilon = 1$.
- 28) On a $\lim_{\substack{x\to 0\\x<0}} \lfloor x \rfloor = -1$ et $\lim_{\substack{x\to 0\\x>0}} \lfloor x \rfloor = 0$, la fonction f n'admet pas de limite en 0.
- **29)** On a $\lim_{\substack{x\to 0\\x<0}} f(x) = -1$ et $\lim_{\substack{x\to 0\\x>0}} f(x) = -1$, la fonction f n'admet pas de limite en 0 car f(0) = 0.
- **30)** On remarque que |-f(x)-(-l)|=|f(x)-l|.
- **31)** $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = +\infty.$
- 32) $\lim_{x \to +\infty} f(x) = 1024$ et $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \frac{1}{1024}$.

33)
$$\lim_{x \to +\infty} f(x) = -\frac{\pi}{4}.$$

34) On pose
$$X = \frac{1}{x^2}$$
 et on utilise $\lim_{X \to +\infty} \frac{e^X}{X} = +\infty$ d'où $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = +\infty$ et $\lim_{\substack{x \to 0 \\ x < 0}} f(x) = -\infty$.

35) On a
$$f(x) = x \left(2 \frac{\ln x}{x} - 1 \right) + \ln \left(1 + \frac{1}{x^2} \right)$$
 d'où $\lim_{x \to +\infty} f(x) = -\infty$.

36) On a
$$f(x) = \frac{x-2}{x-1}$$
 d'où $\lim_{\substack{x \to 1 \\ x < 1}} f(x) = +\infty$ et $\lim_{\substack{x \to 1 \\ x > 1}} f(x) = -\infty$ de même $g(x) = \frac{x-2}{x+1}$ d'où $\lim_{\substack{x \to 1 \\ x < 1}} g(x) = \lim_{\substack{x \to 1 \\ x > 1}} g(x) = -\frac{1}{2}$.

37) On a
$$f(x) = \frac{x}{\sqrt{x^2 + x} + x}$$
 d'où $\lim_{x \to +\infty} f(x) = \frac{1}{2}$.

38) On a
$$f(x) = \frac{2}{\sqrt{1+x} + \sqrt{1-x}}$$
 pour $x \neq 0$ d'où $\lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} f(x) = 1$.

- 39) On pose $u_n=2n\pi$ et $v_n=(2n+1)\pi$, si la fonction f admettait une limite l en $+\infty$ on aurait $\lim_{n \to +\infty} f(u_n) = \lim_{n \to +\infty} f(v_n) = l.$
- **40)** On montre que $\lim_{\substack{x\to 0 \\ x<0}} f(x) = \lim_{\substack{x\to 0 \\ x>0}} f(x) = f(0).$ **41)** On montre que $\lim_{x\to 0} f(x) = f(0).$
- **42)** $\tilde{f}: x \mapsto x + 1$.
- **43)** On a $\lim_{\substack{x\to 0\\x<0}} f(x) = -1$ et $\lim_{\substack{x\to 0\\x>0}} f(x) = 1$, la fonction f n'admet pas de limite en 0.
- **44)** On a $1-x < f(x) \le 1$ si x > 0 et $1-x > f(x) \ge 1$ si x < 0 d'où $\lim_{\substack{x \to 0 \\ x < 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} f(x) = 1$.
- **45)** On montre que la fonction $v: x \mapsto x + 3e^x$ ne s'annule pas sur [-1;1]
- **46)** On a $f = \ln \circ u$ avec u définie et continue sur \mathbb{R} à valeurs dans $]0; +\infty[$.
- **47)** On pose $a \in \mathbb{Z}$, f est continue sur]a; a+1[car $f(x)=a+\sqrt{x-a}$ pour $x \in]a; a+1[$ et de plus $\lim_{\substack{x \to a \\ x < a}} f(x) = a - 1 + \sqrt{1} = a = f(a) \text{ et } \lim_{\substack{x \to a \\ x > a}} f(x) = a + \sqrt{0} = a = f(a).$
- 48) On montre que f est bornée pour $x \leq M_1$ et pour $x \geq M_2$ puis si $x_1 < x_2$ on considère l'image du segment $[x_1; x_2]$ par la fonction f continue sur \mathbb{R} .
- **49)** On étudie les variations de la fonction $f: x \mapsto x^3 x + 1$, f s'annule en $\alpha \in]-2,-1[$.
- **50)** On étudie les variations de la fonction $f: x \mapsto 8x^7 7x 1$ et on remarque que $f(-\frac{\sqrt{2}}{2}) = 3\sqrt{2} 1 > 0$, la fonction s'annule en $\alpha, \beta \in]-1;0[$ et $\gamma = 1.$
- **51)** La fonction g est continue sur [0;1] avec $g(0) \le 0$ et $g(1) \ge 0$ donc s'annule sur [0;1].
- **52)** On a f(]-1;1[)=[0;1[.
- **53)** On a $f([-1;1]) = [-\frac{2\sqrt{3}}{9}; \frac{2\sqrt{3}}{9}].$
- **54)** On considère $f(x) = \frac{7}{2} + \frac{1}{2}\cos(3\pi x)$.
- **55)** $g: y \mapsto e^y 1$.
- **56)** $g: y \mapsto \frac{y}{2-y}$.
- **57)** $g: y \mapsto y + \sqrt{y^2 1}$.
- **58)** En divisant l'étude sur \mathbb{R}_- et \mathbb{R}_+ , on montre que f est strictement croissante et que $f(\mathbb{R}) =]-1;1[$, l'application réciproque est $g: y \mapsto \frac{y}{1-|y|}$.

- **59)** On remarque que $\frac{e^{\sqrt{x}}}{e^x} = e^{-x(1-\frac{1}{\sqrt{x}})}$.
- **60)** On a $f(x) \sim \frac{1}{2}x$.
- **61)** On a $f(x) \sim x 1$.
- 62) On remarque que le produit d'un fonction bornée au voisinage de $+\infty$ par une fonction qui tend vers 0 en $+\infty$ est une fonction qui tend vers 0 en $+\infty$.
- **63)** On montre par encadrement que $f(x) \underset{+\infty}{\sim} x$.
- **64)** On a $f(x) = \frac{1}{\sqrt{x^2 + 1} + x}$ d'où $f(x) \sim \frac{1}{2x}$.
- **65)** On considère le contre-exemple : f(x) = x et g(x) = x + 1.
- **66)** On a $g(y) \sim y$.
- 67) La fonction $\frac{f}{g}$ tendant vers 1 en a, on peut montrer qu'il existe un voisinage de a sur lequel elle est positive.