XIV. Applications linéaires

1 Applications linéaires

Définition 1. On dit qu'une application $f: E \to F$ où E et F sont deux \mathbb{K} -espaces vectoriels est linéaire si pour tous $\overrightarrow{u}, \overrightarrow{v} \in E$ et pour tous $\lambda, \mu \in \mathbb{K}$ on a $f(\lambda \overrightarrow{u} + \mu \overrightarrow{v}) = \lambda f(\overrightarrow{u}) + \mu f(\overrightarrow{v})$. On note $\mathcal{L}(E, F)$ l'ensemble des applications linéaires de E dans F.

Remarque 1. L'image par une application linéaire d'une combinaison linéaire de vecteurs est égale à la combinaison linéaire de leurs images.

Remarque 2. Si f est linéaire, $f(\overrightarrow{0_E}) = \overrightarrow{0_F}$.

Remarque 3. $\mathcal{L}(E,F)$ est un \mathbb{K} -espace vectoriel.

Exemple 1. Une homothétie vectorielle de rapport $k \in \mathbb{K}$ est une application linéaire :

$$\begin{array}{cccc} f: & E & \to & E \\ & \overrightarrow{\mathcal{U}} & \mapsto & k \overrightarrow{\mathcal{U}} \end{array}$$

Exemple 2. La dérivation est une application linéaire :

$$\begin{array}{ccc} f: & \mathbb{K}[X] & \to & \mathbb{K}[X] \\ P & \mapsto & P' \end{array}$$

Exercice 1. Montrer que l'application $f: \mathbb{R}^2 \to \mathbb{R}^2$ est linéaire $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x+y \\ x-y \end{pmatrix}$

Définition 2.

- Une application linéaire de E dans E est appelée un endomorphisme, on note $\mathcal{L}(E)$ l'ensemble des endomorphismes de E.
- Une application linéaire de E dans K est appelée une forme linéaire.

Exercice 2. Donner un exemple de forme linéaire non nulle de \mathbb{R}^2 dans \mathbb{R} puis donner un exemple de forme linéaire non nulle de $\mathbb{R}[X]$ dans \mathbb{R} .

Exercice 3. L'application $f \mapsto f \circ f$ est-elle un endomorphisme de $\mathcal{F}(\mathbb{R}, \mathbb{R})$?

Propriété 1. La composée de deux applications linéaires est une application linéaire.

Définition 3. Une application linéaire bijective est appelée un isomorphisme.

Propriété 2. L'application réciproque d'un isomorphisme est un isomorphisme.

Définition 4. Un endomorphisme bijectif est appelé un automorphisme, on appelle groupe linéaire et on note GL(E) l'ensemble des automorphismes d'un \mathbb{K} -espace vectoriel E.

Exercice 4. Montrer que l'application f de l'exercice 1 est un automorphisme de \mathbb{R}^2 et expliciter son application réciproque.

Noyau et image d'une application linéaire

Propriété 3. On considère $f \in \mathcal{L}(E,F)$ et E',F' deux sous-espaces vectoriels respectifs des \mathbb{K} -espaces vec $toriels \ E \ et \ F, \ alors :$

- L'image directe $f(E') = \{f(\overrightarrow{u}) / \overrightarrow{u} \in E'\}$ de E' est un sous-espace vectoriel de F.
- L'image réciproque $f^{-1}(F') = \{\overrightarrow{u} \in E \mid f(\overrightarrow{u}) \in F'\}$ de F' est un sous-espace vectoriel de E.

Définition 5. On considère $f \in \mathcal{L}(E, F)$ où E et F sont deux \mathbb{K} -espaces vectoriels.

- on appelle noyau de f, $\left[\operatorname{Ker} f = f^{-1} \left(\left\{ \overrightarrow{0_F} \right\} \right) = \left\{ \overrightarrow{u} \in E \ / \ f(\overrightarrow{u}) = \overrightarrow{0_F} \right\} \right|$.
- on appelle image de f, $\operatorname{Im} f = f(E) = \{f(\overrightarrow{u}) / \overrightarrow{u} \in E\}$.

Remarque 4. Ker f est un sous-espace vectoriel de E et Im f est un sous-espace vectoriel de F.

Exercice 5. Déterminer le noyau et l'image de l'application linéaire $f: \mathbb{K}[X] \to \mathbb{K}[X]$.

Exercice 6. Déterminer le noyau et l'image de la forme linéaire f : $\left(\begin{array}{c} x\\y\\z\end{array}\right) \quad \mapsto \quad x+y+z$

On considère $f \in \mathcal{L}(E, F)$ où E et F sont deux \mathbb{K} -espaces vectoriels, alors : Propriété 4.

- f est injective si et seulement si Ker $f = {\overrightarrow{0_E}}$. f est surjective si et seulement si Im f = F.

Définition 6. On appelle équation linéaire d'inconnue \overrightarrow{u} une équation de la forme $f(\overrightarrow{u}) = \overrightarrow{v}$ avec $f \in$ $\mathcal{L}(E,F), \ \overrightarrow{u} \in E \ et \ \overrightarrow{v} \in F.$

Remarque 5. L'équation linéaire $f(\overrightarrow{u}) = \overrightarrow{v}$ est compatible si $\overrightarrow{v} \in \text{Im } f$ et l'ensemble des solutions est $f^{-1}(\{\overrightarrow{v}\})$, Ker f est l'ensemble des solutions de l'équation linéaire homogène associée.

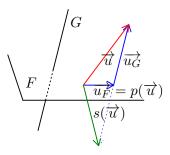
Exercice 7. Montrer que l'équation différentielle $y + y' = e^t$ où $y \in \mathcal{D}(\mathbb{R}, \mathbb{R})$ est une équation linéaire et déterminer l'ensemble de ses solutions.

Projections et symétries

 $\overline{On\ considère\ deux\ so} us-espaces\ vectoriels\ F\ et\ G\ supplémentaires\ d'un\ \mathbb{K}\text{-}espace\ vectoriels}$ toriel E, pour tout $\overrightarrow{u} \in E$ il existe un unique couple $(\overrightarrow{u_F}, \overrightarrow{u_G}) \in F \times G$ tel que

• l'application linéaire $p: E \to E$ est appelée **projection** (ou **projecteur**) $\overrightarrow{u} \mapsto \overrightarrow{u_F}$

 $sur \ F \ parallèlement \ \grave{a} \ G,$ • l'application linéaire $s: E \to E$ est appelée symétrie par rapport \grave{a} $\overrightarrow{u} \mapsto \overrightarrow{u_F} - \overrightarrow{u_G}$



Remarque 6. p est un endomorphisme de E et $p \circ p = p$, $s \circ s = Id_E$ donc s est un automorphisme d'application réciproque s.

Exemple 3. L'application linéaire p:

$$\begin{array}{ccc}
\mathbb{R}^3 & \to & \mathbb{R}^3 & est une projection. \\
\begin{pmatrix} x \\ y \\ z \end{pmatrix} & \mapsto & \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$$

Exemple 4. L'application linéaire $s: \mathbb{C} \to \mathbb{C}$ est une symétrie.

Exercice 8. On considère p projection sur F parallèlement à G, déterminer Ker p et Im p.

Exercice 9. On considère s symétrie par rapport à F parallèlement à G, déterminer $\operatorname{Ker} s$, $\operatorname{Im} s$, $\operatorname{Ker}(s-Id)$ $et \operatorname{Ker}(s+Id)$.

Propriété 5.

Un endomorphisme f d'un \mathbb{K} -espace vectoriel E tel que $f \circ f = f$ est une projection sur Im f parallèlement à Ker f.

Exercice 10. Montrer que l'application $f: \mathbb{K}[X] \to \mathbb{K}[X]$ $P(X) \mapsto P(X) - P(0)$ est une projection et déterminer ses

éléments caractéristiques.

Un endomorphisme f d'un \mathbb{K} -espace vectoriel E tel que $f \circ f = Id_E$ est une symétrie Propriété 6. par rapport à $Ker(f - Id_E)$ parallèlement à $Ker(f + Id_E)$.

Exercice 11. Montrer que l'application $f: \mathbb{K}[X] \to \mathbb{K}[X]$ $P(X) \mapsto P(X) - 2P(0)$ est une symétrie et déterminer ses éléments caractéristiques.

4 Applications linéaires en dimension finie

Propriété 7. On considère une application linéaire $f \in \mathcal{L}(E,F)$ où E et F sont deux \mathbb{K} -espaces vectoriels de dimension finie ainsi qu'une famille $(\overrightarrow{e}_1, \overrightarrow{e}_2, \dots, \overrightarrow{e}_n)$ génératrice de E, alors $(f(\overrightarrow{e}_1), f(\overrightarrow{e}_2), \dots, f(\overrightarrow{e}_n))$ est une famille génératrice de f(E).

Exercice 12. Déterminer une base de l'image de l'application linéaire $f: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$ $P(X) \mapsto P(X) - XP'(X)$

Définition 8. On appelle rang d'une application linéaire $f \in \mathcal{L}(E, F)$ où E et F sont deux \mathbb{K} -espaces vectoriels de dimension finie, $\lceil \operatorname{rg} f = \dim(\operatorname{Im} f) \rceil$.

Exercice 13. Déterminer le rang de l'application linéaire $f: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$. $P(X) \mapsto P(X) - XP'(X)$

Remarque 7. Une application linéaire $f \in \mathcal{L}(E, F)$ est surjective si et seulement si rg $f = \dim F$.

Théorème 1. Théorème du rang

On considère une application linéaire $f \in \mathcal{L}(E,F)$ où E et F sont deux \mathbb{K} -espaces vectoriels de dimension finie, alors :

$$\operatorname{rg} f = \dim E - \dim(\operatorname{Ker} f)$$

Exercice 14. Déterminer le rang de l'application $f: \mathbb{R}^2 \to \mathbb{R}^3$. $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x+y \\ x-y \\ -x+y \end{pmatrix}$

Remarque 8. Si $f \in \mathcal{L}(E, F)$ est bijective, nécessairement dim $E = \dim F$.

Exercice 15. Construire un isomorphisme de $\mathbb{R}_2[X]$ dans \mathbb{R}^3 .

Corollaire 1. On considère une application linéaire $f \in \mathcal{L}(E,F)$ où E et F sont deux \mathbb{K} -espaces vectoriels de dimension finie avec dim $E = \dim F$, alors :

f injective $\Leftrightarrow f$ surjective $\Leftrightarrow f$ bijective

Contre-exemple 1. L'application linéaire $f: \mathbb{K}[X] \to \mathbb{K}[X]$ est surjective mais pas injective. $P \mapsto P'$

Exercice 16. Montrer que $f: \mathbb{R}^3 \to \mathbb{R}_2[X]$ est un isomorphisme. $\begin{pmatrix} a \\ b \\ c \end{pmatrix} \mapsto aX^2 + bX + c$

 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x+y \\ y+z \\ x+z \end{pmatrix}$

5 Représentation matricielle d'une application linéaire

Propriété 8. Une application linéaire $f \in \mathcal{L}(E,F)$ où E et F sont deux \mathbb{K} -espaces vectoriels de dimension finie est entièrement déterminée par l'image $(f(\overrightarrow{e}_1), f(\overrightarrow{e}_2), \ldots, f(\overrightarrow{e}_n))$ d'une base quelconque $(\overrightarrow{e}_1, \overrightarrow{e}_2, \ldots, \overrightarrow{e}_n)$ de E.

Exercice 18. Déterminer l'application linéaire f telle que $f(\overrightarrow{e}_1) = \overrightarrow{e}_1 + \overrightarrow{e}_2$ et $f(\overrightarrow{e}_2) = \overrightarrow{e}_1$ où $(\overrightarrow{e}_1, \overrightarrow{e}_2)$ est la base canonique de \mathbb{R}^2 .

Définition 9. On considère une application linéaire $f \in \mathcal{L}(E, F)$ où E est un \mathbb{K} -espace vectoriel de dimension p muni d'une base \mathcal{B} et F un \mathbb{K} -espace vectoriel de dimension p muni d'une base \mathcal{C} .

On appelle matrice de f de la base $\mathcal B$ dans la base $\mathcal C$ et on note $\underset{\mathcal B,\mathcal C}{\mathcal M}$ at f la matrice dont les colonnes sont les coordonnées dans la base $\mathcal C$ des images des vecteurs de la base $\mathcal B$ par l'application f.

Si on pose
$$\mathcal{B} = (\overrightarrow{u_1}, \overrightarrow{u_2}, \dots, \overrightarrow{u_p}), \ \mathcal{C} = (\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_n}) \ et \ \underset{\mathcal{B}, \mathcal{C}}{\mathcal{M}} at \ f = (a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq p}} \ alors \ f(\overrightarrow{u_j}) = \sum_{i=1}^{i-n} a_{ij} \overrightarrow{v_i} \ pour \ tout \ j \in [1; p].$$

Remarque 9. La matrice de l'application identité de E dans E où E est un \mathbb{K} -espace vectoriel de dimension n est la matrice I_n .

Exercice 19. On considère l'application linéaire $f: \mathbb{R}_2[X] \to \mathbb{R}_1[X]$. Déterminer la matrice de f de $P \mapsto P'$

la base canonique \mathcal{B} de $\mathbb{R}_2[X]$ dans la base canonique \mathcal{C} de $\mathbb{R}_1[X]$ puis la matrice de f de la base $\mathcal{B}' = (1, 1+X, 1+X+X^2)$ de $\mathbb{R}_2[X]$ dans la base $\mathcal{C}' = (1, 1+X)$ de $\mathbb{R}_1[X]$.

Remarque 10. Dans le cas où f est un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension finie muni d'une base \mathcal{B} , on note \mathcal{M} at f et on appelle matrice de f dans la base \mathcal{B} la matrice de f de la base \mathcal{B} dans la base \mathcal{B} .

Exercice 20. Déterminer la matrice de l'application linéaire $f: \mathbb{R}^3 \to \mathbb{R}^3$ dans la base $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x \\ x+y \\ x+y+z \end{pmatrix}$

canonique de \mathbb{R}^3 .

Propriété 9. On considère un \mathbb{K} -espace vectoriel E de dimension p muni d'une base \mathcal{B} et un \mathbb{K} -espace vectoriel F de dimension n muni d'une base \mathcal{C} , alors l'application $\mathcal{L}(E,F) \to \mathcal{M}_{n,p}(\mathbb{K})$ est un isomorphisme. $f \mapsto \mathcal{M}_{at} f$

Remarque 11. Si E et F sont deux K-espaces vectoriels de dimension finie, alors dim $\mathcal{L}(E,F) = \dim E \times \dim F$.

Exercice 21. Déterminer l'application linéaire de \mathbb{R}^2 dans \mathbb{R}^3 de matrice $\begin{pmatrix} 1 & 1 \\ 1 & -1 \\ 0 & -1 \end{pmatrix}$ de la base canonique de \mathbb{R}^3 .

Propriété 10. On considère une application linéaire $f \in \mathcal{L}(E, F)$ où E est un \mathbb{K} -espace vectoriel de dimension p muni d'une base \mathcal{B} et F un \mathbb{K} -espace vectoriel de dimension n muni d'une base \mathcal{C} et on considère un vecteur $\overrightarrow{u} \in E$ de coordonnées $(\lambda_1, \lambda_2, \ldots, \lambda_p)$ dans la base \mathcal{B} ainsi qu'un vecteur $\overrightarrow{v} \in F$ de coordonnées $(\mu_1, \mu_2, \ldots, \mu_n)$ dans la base \mathcal{C} , alors :

$$\boxed{\overrightarrow{v} = f(\overrightarrow{u}) \Longleftrightarrow V = MU} \quad où \quad M = \underset{\mathcal{B}, \mathcal{C}}{\mathcal{M}at} \ f, \quad U = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix} \quad et \quad V = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{pmatrix}.$$

Exercice 22. Interpréter matriciellement puis en terme d'application linéaire le système linéaire suivant :

$$\begin{cases} x + 2y + 3z = 1 \\ 3x + 2y + z = -1 \end{cases}$$

Corollaire 2. On considère deux applications linéaires $f \in \mathcal{L}(E,F)$ et $g \in \mathcal{L}(F,G)$ où E est un \mathbb{K} -espace vectoriel de dimension finie muni d'une base \mathcal{B} , F un \mathbb{K} -espace vectoriel de dimension finie muni d'une base \mathcal{C} et G un \mathbb{K} -espace vectoriel de dimension finie muni d'une base \mathcal{D} alors \mathcal{B} alors \mathcal{B} alors \mathcal{B} .

Corollaire 3. Une application linéaire $f \in \mathcal{L}(E)$ où E est un \mathbb{K} -espace vectoriel de dimension finie muni d'une base \mathcal{B} est un isomorphisme si et seulement si sa matrice M dans la base \mathcal{B} est inversible et dans ce cas la matrice de l'application réciproque de f dans la base \mathcal{B} est M^{-1} .

Exercice 23. En utilisant un système linéaire, montrer que la matrice $A = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 3 & 0 \\ 1 & -2 & 1 \end{pmatrix}$ est inversible et calculer son inverse.

Définition 10. L'ensemble des matrices inversibles de $\mathcal{M}_n(\mathbb{K})$ est appelé groupe linéaire et noté $\mathrm{GL}_n(\mathbb{K})$.

6 Changement de base

Définition 11. On considère un \mathbb{K} -espace vectoriel E de dimension finie muni de deux bases \mathcal{B} et \mathcal{B}' , on appelle matrice de passage de la base \mathcal{B} à la base \mathcal{B}' la matrice \mathcal{M} at Id_E .

Remarque 12. Les colonnes de la matrice de passage de la base \mathcal{B} à la base \mathcal{B}' représentent les coordonnées des vecteurs de la base \mathcal{B}' dans la base \mathcal{B} .

Propriété 11. La matrice de passage de la base \mathcal{B} à la base \mathcal{B}' est inversible et son inverse est la matrice de passage de la base \mathcal{B}' à la base \mathcal{B} .

Exercice 24. On considère \mathbb{R}^2 muni d'une base $\mathcal{B} = (\overrightarrow{e_1}, \overrightarrow{e_2})$ et on définit $\overrightarrow{e_1}' = \overrightarrow{e_1} + \overrightarrow{e_2}$ et $\overrightarrow{e_2}' = \overrightarrow{e_1} - \overrightarrow{e_2}$. Montrer que $\mathcal{B}' = (\overrightarrow{e_1}', \overrightarrow{e_2}')$ est une base de \mathbb{R}^2 et déterminer la matrice de passage de \mathcal{B} à \mathcal{B}' puis la matrice de passage de \mathcal{B}' à \mathcal{B} .

Propriété 12. On considère un \mathbb{K} -espace vectoriel E de dimension finie muni de deux bases \mathcal{B} et \mathcal{B}' , on note P la matrice de passage de la base \mathcal{B} à la base \mathcal{B}' et on définit les matrices colonnes U et U' formées des coordonnées respectives d'un vecteur $\overrightarrow{u} \in E$ dans les bases \mathcal{B} et \mathcal{B}' , alors U = PU'.

Remarque 13. La formule précédente peut également s'écrire $U' = P^{-1}U$.

Exercice 25. On considère \mathbb{R}^2 muni d'une base $\mathcal{B} = (\overrightarrow{e_1}, \overrightarrow{e_2})$ et on définit la base $\mathcal{B}' = (\overrightarrow{e_1}' = \overrightarrow{e_1} + \overrightarrow{e_2}, \overrightarrow{e_2}' = \overrightarrow{e_1} - \overrightarrow{e_2})$. Déterminer les coordonnées du vecteur $\overrightarrow{u} = \overrightarrow{e_1} + 2\overrightarrow{e_2}$ dans la base \mathcal{B}' .

Remarque 14. La matrice de passage de la base \mathcal{B} à la base \mathcal{B}' permet de passer des coordonnées d'un vecteur dans la base \mathcal{B}' à ses coordonnées dans la base \mathcal{B} (par multiplication matricielle).

Exercice 26. Dans le plan muni d'un repère orthonormal $(O, \overrightarrow{i}, \overrightarrow{j})$, on considère l'hyperbole \mathcal{H} d'équation cartésienne $x^2 - y^2 = 4$, déterminer l'équation cartésienne de \mathcal{H} dans le repère $\left(O, \overrightarrow{I} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \overrightarrow{J} \begin{pmatrix} 1 \\ -1 \end{pmatrix}\right)$.

Propriété 13. On considère $f \in \mathcal{L}(E,F)$ où E est un \mathbb{K} -espace vectoriel de dimension finie muni de deux bases \mathcal{B} et \mathcal{B}' et F est un \mathbb{K} -espace vectoriel de dimension finie muni de deux bases \mathcal{C} et \mathcal{C}' , alors en notant P la matrice de passage de \mathcal{B} à \mathcal{B}' , Q la matrice de passage de \mathcal{C} à \mathcal{C}' , A la matrice de f de \mathcal{B} dans \mathcal{C} et A' la matrice de f de \mathcal{B}' dans \mathcal{C}' on a $A' = Q^{-1}AP$, les matrices A et A' sont dites équivalentes.

Remarque 15. La formule précédente peut également s'écrire $A = QA'P^{-1}$.

Remarque 16. Dans le cas d'un endomorphisme de E on a $A' = P^{-1}AP$, les matrices A et A' sont dites semblables.

Exercice 27. Dans le plan muni de sa base canonique, on considère la projection $p:(x,y)\mapsto (x,0)$, déterminer la matrice de p dans la base $\left(\overrightarrow{e_1}'\begin{pmatrix}1\\1\end{pmatrix},\overrightarrow{e_2}'\begin{pmatrix}1\\-1\end{pmatrix}\right)$.

7 Rang d'une matrice

Définition 12. On appelle rang d'une matrice $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et on note $\operatorname{rg}(A)$ le rang de l'application linéaire de \mathbb{K}^p dans \mathbb{K}^n de matrice A dans leurs bases canoniques.

Remarque 17. Le rang d'une matrice est égal au rang de ses vecteurs colonnes.

Exercice 28. Déterminer le rang de la matrice $\begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}$.

Exercice 29. Montrer qu'un matrice $A \in \mathcal{M}_n(\mathbb{K})$ est inversible si et seulement si $\operatorname{rg}(A) = n$.

Exercice 30. Montrer que pour $A \in \mathcal{M}_{n,p}(\mathbb{K})$, on a $\operatorname{rg}(A) \leqslant \min(n,p)$.

Propriété 14. Le rang d'une matrice est égal au rang du système linéaire associé.

Propriété 15. Le rang d'une application linéaire $f \in \mathcal{L}(E, F)$ où E et F sont deux \mathbb{K} -espaces vectoriels de dimension finie est égal au rang de sa matrice de \mathcal{B} dans \mathcal{C} où \mathcal{B} et \mathcal{C} sont deux bases quelconques de E et F.

Propriété 16. Le rang d'une matrice est égal au rang de ses vecteurs lignes.

Exercices supplémentaires

Exercice 31

Montrer que $f: \mathbb{K}[X] \to \mathbb{R}^2$ est une application linéaire. $P \mapsto \begin{pmatrix} P(0) \\ P'(0) \end{pmatrix}$

Exercice 32

Montrer que $\phi: \mathcal{C}(\mathbb{R}, \mathbb{R}) \to \mathbb{R}$ est une forme linéaire. ϕ est-elle injective? surjective? $f \mapsto \int_0^1 f(x) \, dx$

Exercice 33 (\star)

Montrer qu'une forme linéaire f sur un \mathbb{K} -espace vectoriel E est soit nulle soit surjective.

Exercice 34

Montrer que $f: \mathbb{R}^3 \to \mathbb{R}^3$ est un automorphisme et déterminer son application $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x \\ x+y \\ x+y+z \end{pmatrix}$

réciproque.

Exercice 35

Montrer que $f: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$ est un automorphisme et déterminer son appliation réciproque.

Exercice 36

Montrer que $f: \mathbb{R}^3 \to \mathbb{R}^2$ est une application linéaire, déterminer son noyau et son $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x+y \\ y+z \end{pmatrix}$

image ainsi que leurs dimensions.

Exercice 37 (\star)

Montrer que $f: P(X) \mapsto XP'(X) - 2P(X)$ est un endomorphisme de $\mathbb{R}_n[X]$, déterminer son noyau et son image ainsi que leurs dimensions.

Exercice 38 (\star)

On considère $f,g\in\mathcal{L}(E)$ où E est un \mathbb{K} -espace vectoriel. Montrer que Im $f\subset \mathrm{Ker}\ g$ si et seulement si $g\circ f=0.$

Exercice 39 $(\star\star)$

On considère $f, g \in \mathcal{L}(E)$ où E est un \mathbb{K} -espace vectoriel. Montrer que $f(\ker g \circ f) = \ker g \cap \operatorname{Im} f$.

Exercice 40 $(\star\star)$

Montrer que $f: P \mapsto P - P'$ est un automorphisme de $\mathbb{R}_n[X]$ et expliciter son application réciproque. (on pourra utiliser des dérivées successives)

Exercice 41

Montrer que $F = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \ / \ x + y = 0 \right\}$ et $G = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \ / \ x - y = 0 \right\}$ sont deux sous-espaces vectoriels supplémentaires de \mathbb{R}^2 .

Déterminer le projeté du vecteur \overrightarrow{u} $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ sur F parallèlement à G ainsi que son symétrique par rapport à F parallèlement à G.

Exercice 42 (\star)

Montrer que $F = \{P \in \mathbb{R}_2[X] / P(1) = 0\}$ et $G = \{P \in \mathbb{R}_2[X] / P'(1) = P''(1) = 0\}$ sont deux sous-espaces vectoriels supplémentaires de $\mathbb{R}_2[X]$.

Déterminer le projeté du polynôme $X^2 + X + 1$ sur F parallèlement à G ainsi que son symétrique par rapport à F parallèlement à G.

Exercice 43

Étant donné
$$\overrightarrow{u}$$
 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$, on définit $p(\overrightarrow{u}) = \begin{pmatrix} x \\ y \\ x+y \end{pmatrix}$ et $s(\overrightarrow{u}) = \begin{pmatrix} x \\ z \\ y \end{pmatrix}$.

Montrer que p est un projecteur et s une symétrie et déterminer leurs éléments caractéristiques.

Exercice 44 (\star)

$$\operatorname{Dans} \mathbb{R}^3 \text{ muni de sa base canonique, on considère } F = \left\{ \left(\begin{array}{c} x \\ y \\ z \end{array} \right) \ / \ x + y + z = 0 \right\} \operatorname{et} G = \operatorname{Vect} \left(\left(\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right) \right).$$

Montrer que $F \oplus G = \mathbb{R}^3$ et calculer les coordonnées de l'image d'un vecteur $\overrightarrow{u} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ quelconque par la projection sur F parallèlement à G puis par la symétrie par rapport à F parallèlement à G.

Exercice 45 (\star)

Dans $\mathbb{R}_2[X]$, déterminer l'image d'un polynôme $P(X) = aX^2 + bX + c$ quelconque par la symétrie s par rapport à $\text{Vect}(1 + X + X^2)$ parallèlement à Vect(1, X).

Exercice 46 (\star)

Montrer que $p \in \mathcal{L}(E)$ est un projecteur si et seulement si s = 2p - Id est une symétrie.

Exercice 47 $(\star\star)$

Montrer que si $s \in \mathcal{L}(E)$ est une symétrie alors $\mathrm{Im}(s+Id) = \mathrm{Ker}(s-Id)$.

Exercice 48

Montrer que
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 est un endomorphisme de \mathbb{R}^3 et déterminer
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} -2x & + & y & + & z \\ x & - & 2y & + & z \\ x & + & y & - & 2z \end{pmatrix}$$

une base de $\operatorname{Im} f$.

Exercice 49

Montrer que
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
 est une application linéaire et déterminer $\operatorname{rg}(f)$.
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x+y \\ x-y \end{pmatrix}$$

Exercice 50 (\star)

On considère $f \in \mathcal{L}(E)$ où E est un \mathbb{K} -espace vectoriel de dimension finie, que peut-on dire de $\operatorname{rg}(-f)$ et $\operatorname{rg}(2f)$?

Exercice 51 $(\star\star)$

On considère $f, g \in \mathcal{L}(E)$ où E est un \mathbb{K} -espace vectoriel de dimension finie, montrer que $|\operatorname{rg} f - \operatorname{rg} g| \leq \operatorname{rg}(f+g) \leq \operatorname{rg} f + \operatorname{rg} g$.

Exercice 52

On considère $f \in \mathcal{L}(E)$ où E est un \mathbb{K} -espace vectoriel de dimension finie. Montrer que $\operatorname{Ker} f \oplus \operatorname{Im} f = E$ si et seulement si $\operatorname{Ker} f \cap \operatorname{Im} f = \left\{ \overrightarrow{0} \right\}$.

Exercice 53

Montrer que $f: \mathbb{R}^3 \to \mathbb{R}^4$ est une application linéaire et déterminer sa matrice de la $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x+y \\ x-y \\ y+z \\ y-z \end{pmatrix}$

base canonique de \mathbb{R}^3 dans la base canonique de \mathbb{R}^4 .

Exercice 54

Déterminer l'application linéaire de $\mathbb{R}_3[X]$ dans $\mathbb{R}_2[X]$ de matrice $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$ de la base canonique de $\mathbb{R}_3[X]$ dans la base canonique de $\mathbb{R}_2[X]$.

Exercice 55

Montrer que $f: \mathbb{R}_2[X] \to \mathbb{R}_1[X]$ est une application linéaire et déterminer sa matrice $P(X) \mapsto P(X+1) - P(X)$ de la base canonique de $\mathbb{R}_2[X]$ dans la base canonique de $\mathbb{R}_1[X]$.

Exercice 56 (\star)

Montrer que $f: P(X) \mapsto XP'(X) - 2P(X)$ est un endomorphisme de $\mathbb{R}_n[X]$ et déterminer sa matrice dans la base canonique de $\mathbb{R}_n[X]$.

Exercice 57

Dans l'espace muni d'une base orthonormale directe $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$, déterminer la matrice de la projection orthogonale sur $\operatorname{Vect}(\overrightarrow{j}, \overrightarrow{k})$ ainsi que la matrice de la symétrie orthogonale par rapport à $\operatorname{Vect}(\overrightarrow{j})$.

Exercice 58

On pose $A=\begin{pmatrix}1&2\\3&4\end{pmatrix}$ et on définit l'application $\phi: \mathcal{M}_2(\mathbb{R}) \to \mathcal{M}_2(\mathbb{R})$. Montrer que ϕ est une $M\mapsto AM-MA$ application linéaire et déterminer sa matrice dans la base canonique $(E_{11}, E_{12}, E_{21}, E_{22})$ de $\mathcal{M}_2(\mathbb{R})$.

Exercice 59

On considère une application $f: \mathbb{R}^3 \to \mathbb{R}^3$ dont la matrice dans la base canonique \mathcal{B} de \mathbb{R}^3 est $M = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$. Montrer que $\mathcal{B}' = \begin{pmatrix} \overline{e_1} & 1 \\ \overline{e_1} & 1 \end{pmatrix}$, $\overline{e_2} & \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$, $\overline{e_3} & \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$ est une base de \mathbb{R}^3 et donner la matrice de f dans la base \mathcal{B}'

Exercice 60

Montrer que $P=\left(\begin{array}{ccc} 0 & -1 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$ est la matrice d'un projecteur p dont on déterminera les éléments caractéristiques.

Exercice 61

Montrer que $S=\left(\begin{array}{ccc} -1 & -2 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$ est la matrice d'une symétrie s dont on déterminera les éléments caractéristiques.

Exercice 62

On se place dans \mathbb{R}^3 muni de sa base canonique \mathcal{B} . Montrer que $\mathcal{B}' = \left(\overrightarrow{e_1}' \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \overrightarrow{e_2}' \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \overrightarrow{e_3}' \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}\right)$

est une base de \mathbb{R}^3 et donner la matrice de passage de \mathcal{B} à \mathcal{B}' ainsi que la matrice de passage de \mathcal{B}' à \mathcal{B} . Déterminer les coordonnées du vecteur $\overrightarrow{u} = \overrightarrow{e_1} + 2\overrightarrow{e_2} + 3\overrightarrow{e_3}$ dans la base \mathcal{B}' .

Exercice 63

On considère l'endomorphisme f de matrice $M=\left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$ dans la base canonique $\mathcal{B}=(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$

de \mathbb{R}^3 . Montrer que Kerf est de dimension 1 et en déterminer une base $(\overrightarrow{e_1}')$, montrer que Imf est de dimension 2 et en déterminer une base $(\overrightarrow{e_2}', \overrightarrow{e_3}')$, montrer que $\mathcal{B}' = (\overrightarrow{e_1}', \overrightarrow{e_2}', \overrightarrow{e_3}')$ est une base de \mathbb{R}^3 et déterminer la matrice M' de f dans celle-ci.

Exercice 64 (\star)

On considère la matrice $M=\begin{pmatrix}1&1&1\\0&2&1\\0&0&3\end{pmatrix}$. Montrer qu'il existe une matrice P inversible telle que $M=PDP^{-1} \text{ avec } D=\begin{pmatrix}1&0&0\\0&2&0\\0&0&3\end{pmatrix} \text{ et en déduire } M^n \text{ pour } n\in\mathbb{N}.$

Exercice 65 $(\star\star)$

Montrer que les matrices $A=\left(\begin{array}{cc} 3 & 1 \\ 2 & 3 \end{array}\right)$ et $B=\left(\begin{array}{cc} 3 & 2 \\ 1 & 3 \end{array}\right)$ sont semblables.

Exercice 66

Déterminer le rang de la matrice $M=\left(\begin{array}{ccc} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 1 & 0 & 3 \end{array}\right).$

Exercice 67 (\star)

On note $M_{\lambda} = \begin{pmatrix} \lambda & -1 & -1 \\ -1 & \lambda & -1 \\ -1 & -1 & \lambda \end{pmatrix}$ pour $\lambda \in \mathbb{R}$. Déterminer le rang de M_{λ} en fonction de λ .

Réponses

- 1) On pose $\begin{pmatrix} x_3 \\ y_3 \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + \mu \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}$ et on montre que $\begin{pmatrix} x_3 + y_3 \\ x_3 y_3 \end{pmatrix} = \lambda \begin{pmatrix} x_1 + y_1 \\ x_1 y_1 \end{pmatrix} + \mu \begin{pmatrix} x_2 + y_2 \\ x_2 y_2 \end{pmatrix}$.
- 2) $f: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto x + y \text{ et } g: P \mapsto P(0).$
- **3)** On pose $f: x \mapsto x$, on a $(2f) \circ (2f) \neq 2(f \circ f)$.
- 4) $g: \left(\begin{smallmatrix} a \\ b \end{smallmatrix}\right) \mapsto \left(\begin{smallmatrix} \frac{a+b}{2} \\ \frac{a-b}{2} \end{smallmatrix}\right)$.
- 5) Ker $f = \mathbb{K}_0[X]$ et Im $f = \mathbb{K}[X]$.
- **6)** Ker $f = \text{Vect}\left(\begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}\right)$ et Im $f = \mathbb{R}$.
- 7) $y(t) = \frac{1}{2}e^t + \lambda e^{-t}$.
- 8) Ker p = G et Im p = F.
- 9) Ker $s = \left\{ \overrightarrow{0} \right\}$, Im s = E, Ker(s Id) = F et Ker(s + Id) = G.
- 10) f est une projection sur le sous-espace vectoriel des polynômes s'annulant en 0 par rapport au sous-espace vectoriel des polynômes constants.
- 11) f est une symétrie par rapport au sous-espace vectoriel des polynômes s'annulant en 0 parallèlement au sous-espace vectoriel des polynômes constants.
- **12)** $(1, X^2)$.
- **13)** 2.
- **14)** 2.
- **15)** $\varphi: aX^2 + bX + c \mapsto \begin{pmatrix} a \\ b \\ c \end{pmatrix}$.
- **16)** On montre que Ker $f = \{\overrightarrow{0}\}$.
- 17) On montre que Ker $f = \{\overrightarrow{0}\}.$
- **18)** $f: \left(\begin{smallmatrix} x \\ y \end{smallmatrix} \right) \mapsto \left(\begin{smallmatrix} x+y \\ x \end{smallmatrix} \right).$
- **19)** $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ et $\begin{pmatrix} 0 & 1 & -1 \\ 0 & 0 & 2 \end{pmatrix}$.
- **20)** $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$.
- **21)** $f: \left(\begin{smallmatrix} x \\ y \end{smallmatrix} \right) \mapsto \left(\begin{smallmatrix} x+y \\ x-y \\ -y \end{smallmatrix} \right).$
- **22)** $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$
- **23)** $A^{-1} = \begin{pmatrix} -3 & 5 & 6 \\ -1 & 2 & 2 \\ 1 & -1 & -1 \end{pmatrix}$.
- **24)** $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ et $\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$.
- **25)** $\overrightarrow{u} = \frac{3}{2}\overrightarrow{e_1}' \frac{1}{2}\overrightarrow{e_2}'.$
- **26)** On a x = X + Y et y = X Y, l'équation devient XY = 1.
- **27**) $\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$.
- **28**) 2.
- 29) L'endomorphisme associée est surjectif.
- 30) On utilise le théorème du rang.
- **31)** On montre que $f(\lambda P + \mu Q) = \lambda f(P) + \mu f(Q)$.
- 32) On utilise la linéarité de l'intégrale. ϕ est surjective mais pas injective.

- **33)** Si il existe $\overrightarrow{u} \in E$ tel que $f(\overrightarrow{u}) = \alpha \neq 0$ alors pour tout $x \in \mathbb{K}$ on a par linéarité $f\left(\frac{x}{\alpha}\overrightarrow{u}\right) = x$.
- **34)** f admet pour application réciproque $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x \\ y-x \\ z-y \end{pmatrix}$.
- **35)** f admet pour application réciproque $\mathbb{R}_2[X] \to \mathbb{R}_2[X]$ $P(X) \mapsto P(X) P'(X)$
- **36)** Ker $f = \text{Vect}\left\{\left(\begin{array}{c} -1\\ 1 \end{array}\right)\right\}$ et Im $f = \mathbb{R}^2$.
- **37)** Pour $n \ge 2$, Ker $f = \text{Vect}(X^2)$ et Im $f = \text{Vect}(1, X, X^3, \dots, X^n)$.
- 38) On procède par double inclusion.
- **39)** On procède par double inclusion.
- **40)** On remarque que si P est non nul P-P' est non nul donc Ker $f=\{0\}$ et f est injective donc bijective car $\mathbb{R}_n[X]$ est de dimension finie. On remarque que si P+P'=Q alors $P=Q+Q'+Q''+\cdots+Q^{(n)}$.
- **41)** $\begin{pmatrix} -\frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$ et $\begin{pmatrix} -2 \\ -1 \end{pmatrix}$.
- **42)** $X^2 + X 2$ et $X^2 + X 5$
- **43)** $p \circ p = p$ donc p est un projecteur sur Im p plan vectoriel d'équation x + y z = 0 parallèlement à Ker p droite vectorielle engendrée par le vecteur $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. $s \circ s = Id$ donc s est une symétrie par rapport à Ker(s Id) plan vectoriel d'équation y z = 0 parallèlement à Ker(s + Id) droite vectorielle engendrée par le vecteur $\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$.
- **44)** $\begin{pmatrix} -y-z \\ y \\ z \end{pmatrix}$ et $\begin{pmatrix} -x-2y-2z \\ y \\ z \end{pmatrix}$.
- **45)** On a $aX^2 + bX + c = a(1 + X + X^2 1 X) + bX + c = a(1 + X + X^2) + (b a)X + (c a)$ d'où $s(aX^2 + bX + c) = a(1 + X + X^2) (b a)X (c a) = aX^2 + (2a b)X + (2a c)$.
- **46)** On a $s \circ s = 2p \circ (2p Id) (2p Id) = 4(p \circ p p) + Id$ donc $s \circ s = Id$ équivaut à $p \circ p = p$.
- **47)** On a $(s-Id) \circ (s+Id) = 0$ donc $\operatorname{Im}(s+Id) \subset \operatorname{Ker}(s-Id)$ et si $s(\overrightarrow{u}) = \overrightarrow{u}$ alors $\overrightarrow{u} = (s+Id)(\frac{1}{2}\overrightarrow{u})$ d'où $\operatorname{Ker}(s-Id) \subset \operatorname{Im}(s+Id)$.
- **48)** $\left\{ \begin{pmatrix} -2\\1\\1 \end{pmatrix}; \begin{pmatrix} -1\\-2\\1 \end{pmatrix} \right\}.$
- **49)** rg(f) = 2.
- **50)** rg(-f) = rg(2f) = rg f.
- **51)** On remarque que $\operatorname{Im}(f+g) \subset \operatorname{Im} f + \operatorname{Im} g$ puis que f = (f+g) + (-g).
- **52)** D'après le théorème du rang, $\dim(\operatorname{Im} f) = \dim E \dim(\operatorname{Ker} f)$ d'où si $\operatorname{Ker} f \cap \operatorname{Im} f = \{\overrightarrow{0}\}, \dim(\operatorname{Ker} f + \operatorname{Im} f) = \dim(\operatorname{Ker} f) + \dim(\operatorname{Im} f) \dim(\operatorname{Ker} f \cap \operatorname{Im} f) = \dim(E).$
- **53)** $\begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix}.$
- **54)** $f: P \mapsto P'$.
- **55)** $\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$.
- **57)** $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ et $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.
- **58)** $\begin{pmatrix} 0 & -3 & 2 & 0 \\ -2 & -3 & 0 & 2 \\ 3 & 0 & 3 & -3 \\ 0 & 3 & -2 & 0 \end{pmatrix}.$

- **59)** $\mathcal{M}at(f) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$
- **60)** $P^2 = P$ donc p est une projection sur Im $p = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \ / \ x + y + z = 0 \right\}$ parallèlement à Ker $p = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \ / \ y = z = 0 \right\}$.
- **61)** $S^2 = I_3$ donc s est une symétrie par rapport à $\operatorname{Ker}(s Id) = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \ / \ x + y + z = 0 \right\}$ parallèlement à $\operatorname{Ker}(s + Id) = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \ / \ y = z = 0 \right\}$.
- **62)** $\mathcal{M}_{\mathcal{B}',\mathcal{B}} Id = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$, $\mathcal{M}_{\mathcal{B},\mathcal{B}'} Id = \begin{pmatrix} -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$ et $\overrightarrow{u} = 2\overrightarrow{e_1}' + \overrightarrow{e_2}'$.
- **63)** On a $\overrightarrow{e_1}'\begin{pmatrix} 1\\0\\0\end{pmatrix}$, $\overrightarrow{e_2}'\begin{pmatrix} 1\\1\\0\end{pmatrix}$, $\overrightarrow{e_3}'\begin{pmatrix} 0\\1\\1\end{pmatrix}$ et $M'=\begin{pmatrix} 0 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{pmatrix}$.
- **64)** $P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ et $M^n = \begin{pmatrix} 1 & 2^n 1 & 3^n 2^n \\ 0 & 2^n & 3^n 2^n \\ 0 & 0 & 3^n \end{pmatrix}$.
- **65)** $B = P^{-1}AP$ avec $P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$.
- **66)** $\operatorname{rg} M = 2$.
- **67)** Le rang de M_{λ} vaut 1 si $\lambda = -1$, 2 si $\lambda = 2$ et 3 sinon.