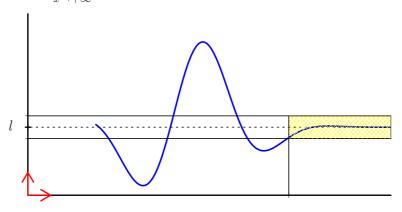
Limites et continuité

1 Limite d'une fonction

1.1 Limite d'une fonction en $+\infty$

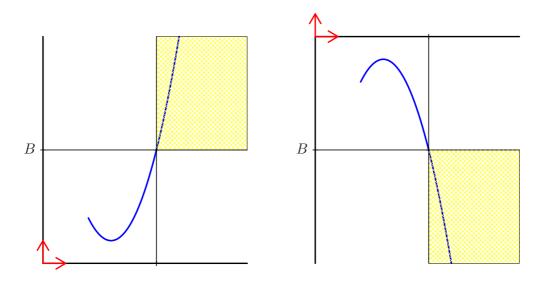
Définition 1. Soit f une fonction définie sur un intervalle de la forme $]A; +\infty[$. On dit que la fonction f admet pour limite le nombre l en $+\infty$ si tout intervalle ouvert contenant l contient toutes les valeurs f(x) pour x assez grand et on note $\lim_{x\to +\infty} f(x) = l$.



La droite d'équation y = l est une asymptote horizontale à la courbe représentative de la fonction f en $+\infty$.

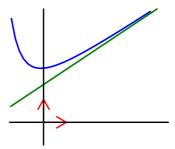
Exemple 1. limites de $\frac{1}{x}$ et $\frac{1}{x^2}$ pour $x \to +\infty$.

Définition 2. Soit f une fonction définie sur un intervalle de la forme $]A; +\infty[$. On dit que la fonction f admet pour limite $+\infty$ (resp. $-\infty$) en $+\infty$ si tout intervalle de la forme $]B; +\infty[$ (resp. $]-\infty; B[$) contient toutes les valeurs f(x) pour x assez grand et on note $\lim_{x\to +\infty} f(x) = +\infty$ (resp. $\lim_{x\to +\infty} f(x) = -\infty$).



Exemple 2. limites de \sqrt{x} et x^2 pour $x \to +\infty$.

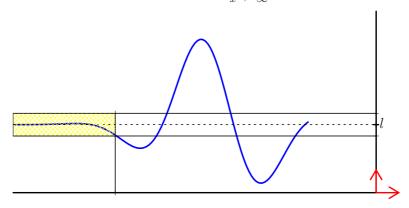
Définition 3. Soit f une fonction définie sur un intervalle de la forme $]A; +\infty[$. On dit que la droite d'équation y = mx + p est une asymptote oblique à la courbe représentative de f en $+\infty$ si $\lim_{x \to +\infty} [f(x) - (mx + p)] = 0$.



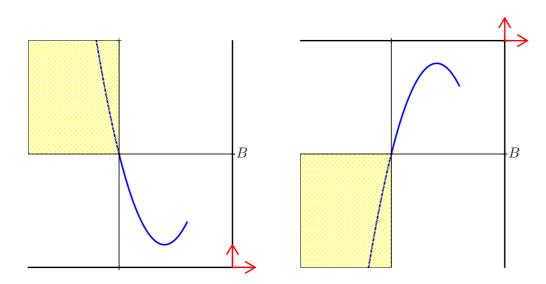
Exemple 3.
$$f(x) = \frac{2x^2 - 5x + 4}{x - 1}$$
.

1.2 Limite d'une fonction en $-\infty$

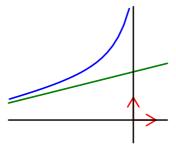
Définition 4. Soit f une fonction définie sur un intervalle de la forme $]-\infty; A[$. On dit que la fonction f admet pour limite le nombre l en $-\infty$ si tout intervalle ouvert contenant l contient toutes les valeurs f(x) pour x négatif de valeur absolue assez grande et on note $\lim_{x\to -\infty} f(x) = l$.



La droite d'équation y=l est une asymptote horizontale à la courbe représentative de la fonction f en $-\infty$. **Définition 5.** Soit f une fonction définie sur un intervalle de la forme $]-\infty; A[$. On dit que la fonction f admet pour limite $+\infty$ (resp. $-\infty$) en $-\infty$ si tout intervalle de la forme $]B; +\infty[$ (resp. $]-\infty; B[$) contient toutes les valeurs f(x) pour x négatif de valeur absolue assez grande et on note $\lim_{x\to -\infty} f(x) = +\infty$ (resp. $\lim_{x\to -\infty} f(x) = -\infty$).

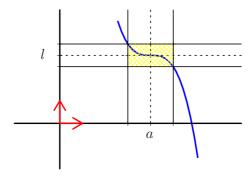


Définition 6. Soit f une fonction définie sur un intervalle de la forme $]-\infty$; A[. On dit que la droite d'équation y=mx+p est une asymptote oblique à la courbe représentative de f en $-\infty$ si $\lim_{x\to -\infty} [f(x)-(mx+p)]=0$.

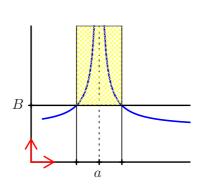


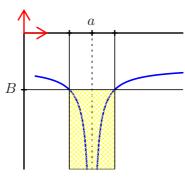
1.3 Limite d'une fonction en un réel

Définition 7. Soit f une fonction définie au voisinage d'un réel a. On dit que la fonction f admet pour limite le nombre l en a si tout intervalle ouvert contenant l contient toutes les valeurs f(x) pour x assez proche de a et on note $\lim_{x\to a} f(x) = l$.



Définition 8. Soit f une fonction définie au voisinage d'un réel a. On dit que la fonction f admet pour limite $+\infty$ (resp. $-\infty$) en a si tout intervalle de la forme $]B; +\infty[$ (resp. $]-\infty; B[$) contient toutes les valeurs f(x) pour x assez proche de a et on note $\lim_{x\to a} f(x) = +\infty$ (resp. $\lim_{x\to a} f(x) = -\infty$).





La droite d'équation x = a est une asymptote verticale à la courbe représentative de la fonction f.

2 Opérations sur les limites

2.1 Limite de la somme de deux fonctions

Théorème 1.

$\lim_{x \to u(x)$	l	l	l	$+\infty$	$-\infty$	$+\infty$
$\lim_{x \to 0} v(x)$	l'	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim_{x \to \infty} [u(x) + v(x)]$	l + l'	$+\infty$	$-\infty$	$+\infty$	$-\infty$?

Démonstration. admise.

2.2 Limite du produit de deux fonctions

Théorème 2.

$\lim_{x \to u(x)$	l	$l \neq 0$	0	∞
$\lim_{x \to 0} v(x)$	l'	∞	∞	∞
$\lim_{x \to \infty} [u(x) \times v(x)]$	$l \times l'$	∞	?	∞

Le signe de la limite s'obtenant au moyen de la règle des signes pour la multiplication.

Démonstration. admise.

Limite du quotient de deux fonctions

Théorème 3.

$\lim_{x \to u(x)$	l	$l \neq 0$	∞	l	∞	0
$\lim_{x \to 0} v(x)$	$l' \neq 0$	0	l'	∞	∞	0
$\lim_{x \to \infty} \frac{u(x)}{v(x)}$	$\frac{l}{l'}$	∞	∞	0	?	?

Le signe de la limite s'obtenant au moyen de la règle des signes pour la division.

Démonstration, admise.

Limite de la composée de deux fonctions

Définition 9. Soit u une fonction définie sur un intervalle I à valeurs dans un intervalle J et v une fonction définie sur l'intervalle J. On appelle fonction composée de u par v la fonction notée $v \circ u$ définie sur l'intervalle I par $v \circ u(x) = v[u(x)]$.

Théorème 4. On désigne par les lettres α , β et γ un nombre réel ou $+\infty$ ou $-\infty$. Si $\lim_{n \to \infty} u(x) = \beta$ et $\lim_{x \to \beta} v(x) = \gamma \ alors \lim_{x \to \alpha} (v \circ u)(x) = \gamma.$

Démonstration. admise.

Exemple 4. limite de $\sqrt{x^2+1}$ pour $x \to +\infty$.

Comparaison de limites 3

Le théorème qui suit est appelé Théorème des Gendarmes.

Théorème 5. On désigne par la lettre α un nombre réel ou $+\infty$ ou $-\infty$ et par la lettre l un nombre réel. Soient u, v et w trois fonctions définies sur un intervalle I de \mathbb{R} telles que $u(x) \leq v(x) \leq w(x)$ pour tout $x \in I. \ Si \ \lim_{x \to \alpha} u(x) = l \ \ et \ \lim_{x \to \alpha} w(x) = l \ \ alors \ \lim_{x \to \alpha} v(x) = l.$

Démonstration. au programme dans le cas $\alpha = +\infty$.

Dans le cas d'une limite infinie, un seul "gendarme" est nécessaire :

Théorème 6. On désigne par la lettre α un nombre réel ou $+\infty$ ou $-\infty$. Soient u et v deux fonctions définies au voisinage de α sur un intervalle I de \mathbb{R} .

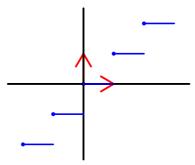
- $Si\ u(x) \leqslant v(x)$ pour tout $x \in I$ et $\lim_{x \to \alpha} u(x) = +\infty$ alors $\lim_{x \to \alpha} v(x) = +\infty$. $Si\ u(x) \leqslant v(x)$ pour tout $x \in I$ et $\lim_{x \to \alpha} v(x) = -\infty$ alors $\lim_{x \to \alpha} u(x) = -\infty$.

Démonstration. admise.

4 Continuité d'une fonction

Définition 10. Une fonction f définie sur un intervalle I de \mathbb{R} est dite continue en $a \in I$ si $\lim_{x \to a} f(x) = f(a)$. Contre-Exemple 1. fonction partie entière.

On note E(x) le plus grand entier inférieur ou égal à x.



Définition 11. Une fonction f définie sur un intervalle I de \mathbb{R} est dite continue sur I si elle est continue en tout point de I.

Intuitivement, une fonction continue sur un intervalle peut être représentée graphiquement sans lever le crayon.

Théorème 7.

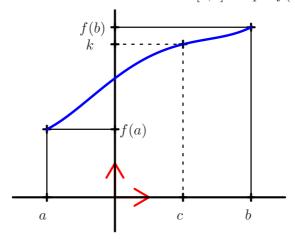
- Les fonctions $x \mapsto x^n$ avec $n \in \mathbb{N}$ sont continues sur \mathbb{R} .
- Les fonctions polynômes sont continues sur \mathbb{R} .
- Les fonctions $x \mapsto \frac{1}{x^n}$ avec $n \in \mathbb{N}$ sont continues sur $]-\infty;0[$ et $]0;+\infty[$.
- Les fonctions rationnelles sont continues sur chacun des intervalles de leur ensemble de définition.

- La fonction $x \mapsto \sqrt{x}$ est continue sur $[0; +\infty[$.
- Les fonctions sinus et cosinus sont continues sur \mathbb{R} .

Démonstration. admise.

5 Théorème des valeurs intermédiaires

Théorème 8. Soit f une fonction définie et continue sur un intervalle I de \mathbb{R} et a et b deux réels de I. Pour tout réel $k \in [f(a); f(b)]$ il existe au moins un réel $c \in [a; b]$ tel que f(c) = k.



Démonstration. au programme avec l'utilisation de suites adjacentes.

Corollaire 1. Soit f une fonction définie, continue et strictement monotone sur un intervalle [a;b] de \mathbb{R} . Alors pour tout réel $k \in [f(a); f(b)]$ l'équation f(x) = k admet une unique solution dans [a;b].

Démonstration. au programme.